データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

戦略思考入門

仮説で切り開くDX推進の道

情報はどう補う? 総合演習を通じて感じたことは、設問の情報だけでは答えられない問題がいくつかあり、不足している情報を取得する必要があるということです。それでも情報が不足する場合があり、その際はある程度仮説を立てて物事を考える必要があります。この点は今回の事例に限らず、実際の業務でも同様だと思いました。100%の情報が揃うことはまずなく、不足する情報は自分で調査をし、または人から聞いて知識を埋めなければならないと感じました。それでもなお未知の部分は、仮説を立てて結論を導き出す力が求められます。 新部署で挑戦する? 10月からDX推進部に異動しました。ここでは、従来の定型業務がなく、正解のない課題に取り組む必要があります。新しいプロジェクトの一つひとつにおいて、今回の学びを活かせると確信しています。特に、フレームワークを活用した現状の整理や仮説思考が重要です。 e-learningで学ぶ? まずは、ある程度答えがある事柄、つまり前提知識については、会社のe-learningを活用して知識を深めたいと思います。そして、新しいことの効果を検証する際には必ず仮説思考が必要であり、100点満点ではないにせよ、今ある情報をもとに効果を試算することに挑戦していきたいです。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

戦略思考入門

実践で磨く戦略差別化の秘訣

ターゲットはどう選ぶ? これまで、差別化を考える際に自社の強みを基準にして戦略を立ててきましたが、まずはターゲットとするクライアントを明確に定めることの重要性に気づきました。さらに、ターゲットの視点から自社が通常競合と捉える企業だけでなく、業界を問わず強豪が存在するか、その強豪と比較して優位に立てるか、また模倣されにくい施策であるかを検討する必要があると学びました。 部署の戦略はどう見直す? 会社全体では差別化できる部分があるものの、所属する部署においてはその点が十分に発揮できていないと感じています。上司が自部署の戦略を考える中で差別化案を提示しているため、これまで自分の意見を積極的に述べる機会が少なかった状況でした。そこで、自らフレームワークに沿って部署を分析し、自身の視点での差別化戦略を模索するとともに、上司の戦略も同じくフレームワークを用いて検証していくつもりです。 現状の課題は何か? 担当部署には多くの競合が存在し、自社全体の強みと比べると、部署内の強みは薄いという現状を改めて認識しました。今後は、自部署の現状を十分に分析した上で、取るべき方向性を明確にし、差別化できるポイントや今後伸ばすべき点について上司と議論していきたいと考えています。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

データをビジュアル化して誤認を防ぐ方法とは

前提を間違えずに検証するには? 平均年齢30才という言葉から、勝手に30才前後が多いと解釈してしまいました。仮説を立てて検証する際にも、前提を間違えると意味がないことを実感しました。データをビジュアル化することで、事実を正しく把握しやすくなり、様々な視点を得られることが体感できました。この誤認しやすい傾向を忘れず、丁寧に事実を把握することを意識したいと思います。自分の単純に判断しやすい癖を改めて感じました。 予測はどのように立てるべき? グラフを作成する前に予測を立ててみることも重要です。事前に予測することで、想定と現実とのギャップを見つけやすくなり、課題箇所を把握しやすくなります。また、作業手順に意識を向け、グラフ作成時には特徴的な箇所を意識することも大事です。今まであまり意識してこなかった手順を意識し、ステップを可視化して実施することに努めたいと思います。 ビジュアル化がもたらす効果は? 仮説検証は、正確な事実把握ができて初めて成り立つため、まずは身近な課題や過去の課題から事実把握のビジュアル化を実践し、確認していくことが大切です。正しい事実把握の習慣化を努め、課題を把握しやすいデータ加工とビジュアル化を念頭に作業を意識的に進めていきます。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

仮説で切り拓く未来への一歩

問題点は何か? 問題解決に向けた仮説の考え方として、まずは「問題は何か」「どこに問題があるのか」「なぜ問題が発生しているのか」「その問題をどうすべきなのか」という点を整理することが重要です。これにより、現状の課題を明確に把握し、解決策を具体的に検討するための土台が作られます。 仮説の意義は? さらに、仮説を立てる意義として、検証マインドの向上、説得力の増強、問題意識の高さ、そして問題解決へのスピードアップが挙げられます。仮説をもとに行動することで、より迅速かつ正確な対策が講じられるため、業績の結果報告を早期に行うことにもつながります。 仮説の使い分けは? また、仮説には「結論の仮説」と「問題解決の仮説」が存在し、正しく使い分けることで、思考の精度が向上するだけでなく、具体的な改善策を導き出すことが可能になります。これまで漠然と問題に取り組んできた経験を振り返り、より効果的な仮説の立て方や、仮説を絞り込む過程について学ぶ必要性を強く感じました。 実務でどう活かす? 今後は、仮説の立て方やその検証プロセスをより深く学び、実務においてスピーディかつ精度の高い成果を生み出すための知識と技術を身につけたいと考えています。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

「課題 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right