クリティカルシンキング入門

なぜを解き明かす成長術

なぜイシューは難しかった? 今週のテーマは「イシューを捉える」でしたが、これまでの学びの中でも特に難しさを感じました。これまでは、解決したいこと=イシューと捉えがちでしたが、今回、まず解決したい目標を前提としてデータを分析し、根本的な問題を洗い出すことが効果的だと学びました。 具体と抽象はどう使う? データを細かく分け、一つ一つ検証する過程で、week1で学んだ具体と抽象の考え方が役立ち、これまでの知識の総合によって初めてイシューを正しく捉えられると実感できました。 なぜ修正時間が増える? 自身の業務では、開発プロジェクトの工数見積もりにおいて、簡単な修正にもかかわらず、なぜ時間がかかってしまうのかという疑問が生じることがよくあります。修正作業や影響確認、テストに要する時間で終わらせがちな現状を踏まえ、それぞれの問題について「なぜ」を追求していく必要性を感じています。 解決策はどう見出す? それぞれの問題に対する具体的な解決策が見つかれば、プロジェクト全体の必要期間が短縮でき、恒久的な改善策が確立されれば、将来的なプロジェクトもこれまでより短い期間で進めることが可能になるでしょう。 論理的思考の進め方は? 今後も、問題に対して論理ツリーのように「なぜ」を分解し、根本課題および効果的な解決策を模索する姿勢を持ち続けたいと思います。今週の総合演習では思考にかなり頭を使い疲労を感じましたが、このプロセスに慣れ、考える場面を増やしていくことが成長に繋がると考えています。

クリティカルシンキング入門

多角的視野で自分を磨く学び

共感で成果はどう出る? 戦略的な営業手法として「共感、自分事化させる」アプローチがあります。これまでなんとか成果を上げることができたものの、実際には適切な方法やコーチがいなければ手探りになり、場当たり的な対応に終始してしまい大変時間を浪費してしまうこともあると感じます。今回の学習を通して、そのような現状や課題が明らかになりました。自身の成長のためにも、視点の偏りや座、そして野といった多角的な視点から分類し、考え抜くプロセスを基本動作に取り入れることの重要性を再認識しました。 企画書のコツは? 事業企画書の作成においては、目的、実行手段、計測可能な目標、さらにはKPIなどの項目を明確に設定することが求められます。提案資料では、まず顧客課題を整理し、優先順位やトレードオフの定義を行い、成功基準やコスト、リソースの判断を行います。そして、行動計画やマーケティング施策においては、遂行目標や手段の設定、さらに進行・中止・撤退の判断が不可欠です。 日常業務でどう確認? これらの内容は、日常の業務においても活用できる考え方です。例えば、日常の発信や応答では、「目的とは何か」「誰のためで誰の基準であるのか」を徹底的に考え、漏れや重複がないかを常に確認することが大切です。また、定期的なビジネス報告や会議では、視点だけでなく視座の観点からの確認やヒアリング、報告が求められます。さらに、事業企画やレビューの際には、顧客や市場、効果の見通しについて偏りや漏れがないかどうかを十分に検証することが重要です。

デザイン思考入門

デザイン思考で見えた変革の瞬間

発注とユーザーの違いは? ITシステムの外部委託先の立場から考えると、システム開発を進める際、お客様はエンドユーザーというよりも、顧客企業の担当部門として対応することが多いです。担当部門はユーザーと異なる視点を持つため、今回学んだエンドユーザーの立場よりも、発注者の意向に注力せざるを得ません。しかし、発注者との共感、課題の理解、試作品の作成といったプロセスは十分に実現可能です。真にエンドユーザーに役立つものを提供するのは難しいものの、発注者の満足を追求する姿勢が重要だと感じています。 満足の不一致はどう? 一方で、発注者の満足を追求できたとしても、発注者がエンドユーザーに目を向けなければ、エンドユーザーの満足と発注者の満足は一致しなくなります。このような複雑な階層構造を持つ大規模な組織では、デザイン思考を一部の人だけが理解していても、途中のプロセスでその意義が薄れてしまうため、広く多くの人に理解してもらうことが必要だと考えました。 試作品の使い分けは? また、プロトタイプの作成方法によって検証できる項目は異なるため、一つのプロトタイプが最適かどうかを問うよりも、各プロトタイプの特性を活かして使い分け、互いに補完していくことが重要です。さらに、組織階層が深い大規模な組織では、開発過程に関わるすべての人がデザイン思考の考え方を身につける必要があると感じました。加えて、生成AIを発注者役として活用し、想定問答を行う手法も有用であると実感したため、今後も積極的に取り入れていきたいと思います。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

クリティカルシンキング入門

解像度を上げる分解思考

分解で見える変化は? 物事の解像度を上げるためには、対象を細かく分解することが有効です。分解した結果をグラフにすると、視覚的に変化が把握しやすくなります。 単純合算は危険? たとえば、①の切り口と②の切り口でそれぞれの結果を導き出した後、単に合算して「~の傾向がある」と判断してしまう自分の傾向に気づくことがありました。しかし、このような安易な判断では、実際の状況を正確に捉えられない可能性があります。 早期結論で誤解? また、すぐに結論に至ると間違った傾向を導き出すリスクがあるため、複数の切り口で分解し、得られた結果を合わせて検討することが重要です。仮説を立てた場合は「本当にそうであるか」を疑い、さらに検証する姿勢が求められます。 MECEの使い方は? MECE―もれなく、ダブりなく分解するという考え方―は、タスクごとにどれだけの工数がかかっているかを把握する作業に役立ちます。グラフ化により、全体の中で平均以上の工数がかかっているタスクを見直すことで、必要なリソースや業務の調整が行いやすくなります。 実例で確認する? プロジェクトにおいては、MECEの手法を用いて、チームメンバーがどのプロセスで課題を抱えているのかを分析しています。ただし、「もれなく」を意識しすぎることで、カテゴリが過剰に分割され、現実の問題に完全にフィットしない場合もあります。実務上、これらの点をどのようにコントロールして使用しているのか、具体的な実例を示していただけるとありがたいと感じています。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

デザイン思考入門

試行錯誤が導く新たな一歩

プロトタイプはどう活かす? 業務において、プロトタイプは新しいプロセスやアプリケーションの原型として位置づけられるため、本番の製品やサービスの一部と見なして、開発に過度の時間や労力をかけてしまい、せっかく作り上げたプロトタイプを無理にでも活かそうとしてしまうことがあります。しかし、プロトタイピングの本来の目的は、具体化されたアイデアに対するユーザーのフィードバックを得ることにあるため、効率的に、何度もプロセスを回すことを意識する必要があります。 評価の真実は? 思い描くプロトタイピングのシーンでは、手間をかけて作ったプロトタイプに対してユーザーからの評価が必ずしも期待通りでない場合も考えられます。このとき、単にプロトタイプの作り方が悪かったと考えるのではなく、そもそもの発想や課題定義に問題があった可能性を検証することが重要です。デザイン思考の各ステップにおいては、できる限り手戻りが発生しないよう注意深く進める工夫が求められる一方で、うまくいかなかった場合には直前のプロセスだけに原因を求めず、必要に応じて大きく方向転換する決断力も大切です。 過程重視の意味は? また、「プロトタイプ」と聞くと、自分のアイデアに対する試作品そのものに注目してしまいがちですが、実際にはユーザーからのフィードバックを得る過程全体を重視することが肝要です。そのため、単なる試作品の開発にとどめず、評価を得るまでのプロセス全体を意識した「プロトタイピング」に取り組んでいくべきだと考えています。

戦略思考入門

フレームワークで読み解く経営戦略

戦略思考はどう身につく? 3C分析、SWOT分析、バリューチェーン分析のEラーニングは今回で2回目となります。以前、グロービスの書籍も2度ほど読んでいましたが、職位や業務内容の変化を受け、戦略的な思考をより一層身につけたいという強い思いから再度学ぶこととなりました。改めてフレームワークに基づいて考えることで、行き当たりばったりではなく、全体像を網羅的に把握できる点を実感しました。特に、今はこれまで以上に経営的な視点で、二手先、三手先、あるいは将来戦略を意識し、限られたリソースの中で包括的な課題解決を図る必要性を感じています。そのため、実践の中でこれらのフレームワークを確実に身につけていきたいと考えています。 品質保証に未来は? 製造業における市場品質保証業務については、一見、即効性のあるビジネスに結びつきにくいように映ります。しかし、品質保証は短期的にはコスト削減に、長期的にはブランド力向上に寄与する重要な役割を担っています。3C分析では、市場や顧客から見た品質の視点、競合他社との品質コストの差、そして自社の強み・弱みの整理が求められます。また、SWOTやPEST分析を通じて、DXやAI技術など新たな技術動向やグローバルな環境の変化を把握し、現状を明確にすることが可能です。加えて、バリューチェーン分析によって、取引先や自社内での問題を定量的に検証し、時間やコストがかかっているプロセスを洗い出すことで、今回学んだ知識を具体的な業務上の改善に活かすことができると感じました。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

「課題 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right