データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

戦略思考入門

受講生の学びが未来を切り開く鍵

ターゲットと独自性は? 差別化を図るためには以下のポイントが重要です。まず、ターゲットを明確に絞り込み、顧客のニーズや嗜好を深く理解します。これにより、どのような特徴やサービスが求められているのかを把握します。そして、競合他社を分析し、自社の独自性を際立たせる要素を見つけ出します。特に顧客に対して独自の価値を提供し、それを明確に伝えることが重要です。 なぜ模倣を防ぐ? また、よくある模倣を防ぐために、アイディアは継続的に考え抜く必要があります。簡単に思いつくことは誰にでも容易に真似されてしまうため、差別化には特異性(付加価値)が求められます。例えば、ホテルやレストラン、あるいは家電製品など、多くの業界で付加価値をつけた商品が支持を得ていると感じます。 どうやって効率上げる? 競合する部署がない場合でも、他社の同様の部署と比較することで、効率化や高品質化のヒントを得ることができます。業務フローの見直しや自動化ツールの導入は、作業の効率を向上させる効果があります。これによりコスト削減や迅速な対応が可能となります。サポート体制やコミュニケーションの質の向上によって、スタッフ間の満足度を高めることも有効です。場合に応じて、フレキシブルな対応ができるようにすることも検討が必要です。 どの技術を使う? さらに、業務スキルの向上を図ることで高品質化を目指すことができます。また、AIやRPAなどの知識を身につけ、それらを活用することで効率化が可能になります。フレームワークを活用できる場面では積極的に試み、どのフレームワークを使うべきかに関しても多くの選択肢を持てるようにします。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

マーケティング入門

イノベーションを日常に活かす心得

イノベーション普及の要件とは? イノベーションの普及要件について学んだことは非常に有益でした。具体的には、次の5つの要件が重要です。まず、比較優位とは、新しいアイデアや技術が既存のものと比較して優れていることです。適合性については、生活に大きな変化を強いるものだと採用が難しいため、適合性を高めることが求められます。また、わかりやすさは、使い手にとって理解しやすく扱いやすいことが不可欠です。使用可能性は、実験的な利用が可能であることを示します。最後に可視性は、新しいアイデアや技術が周りから見て採用されやすい状態を指します。 顧客心理をどう理解する? 商品が売れるかどうかは、顧客のイメージによって大きく左右されます。そのため、顧客の声に耳を傾け、彼らの心理を理解することが重要です。差別化にこだわりすぎると罠に陥ることがあるため、売れない理由を常に考習する姿勢が求められます。 普及要件の活用法は? 顧客心理に訴えかけることを意識し、新しい取り組みや仕組みを社内で共有する際には、イノベーションの普及要件を強く意識していきたいと考えています。特に、相対的な優位性と適合性についてはこれまであまり考慮できていなかったので、今後はこれらを心掛けていきます。 日常での普及要件の習慣化 さらに、イノベーションの普及要件のフレームワークを日常的に意識し、習慣化したいと考えています。この視点を通じて、世の中の商品に改めて目を向け、様々な考察を行いながら知識を深めていきます。そして常に、相手の立場で物事を捉え、どのように魅せるかを他者の視点で意識していくことを心掛けます。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

データ分析で未来を読む: 大学教育の向上指南

データ分析で重要なのは何か? データ分析を行う際には、事実(ファクト)に基づくことはもちろん重要ですが、比較の視点も非常に重要だと学びました。また、見えている事実から見えない事実を推測し考察することも大切です。 分析目的をどう設定する? データ分析の目的を最初にじっくり考えることが重要だと感じました。目的が明確であるならば、そのための準備や材料となるデータも自ずと見えてきます。 上記の内容を自分でしっかり把握した上で、上司や部下に理解してもらうためにどのようにデータを見せるか、プレゼンの仕方も重要です。 大学データをどう活用する? 私は大学に勤務しているため、大学内のさまざまなデータを分析に活用したいと考えています。具体的には、以下のテーマに取り組みたいです: - 入試成績と入学後の成績(GPA)の相関分析 - 入学後の学生生活と卒業時アンケート回答(大学に対する満足度)の相関 - 上記が国籍によってどのような差異があるか - これらのデータをもとに、大学全体として学生に提供する教育やサービスをどう向上させるか 学生の実態をどう把握する? 一例として、学生生活と満足度の相関を探るために、現在の資料を見直し、学生生活の実態を把握するための質問や指標、卒業時のアンケート内容をより充実させたいと考えています。現在のデータをより細かく見ることで、職員である私たちにも見えていない学生の実態があるのではないかと考えています。 さらに、「比較が大事」という視点を持ち、他大学の情報も参考にしたいと考えています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

「比較 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right