クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

戦略思考入門

業務効率化と顧客対応の統合術

会社の繋がり方とは? 山田さんの視点で描かれた親身になってくれる会社、先輩との繋がりのある会社、会社間の繋がりが説明されており、次第に定量的な価値にシフトしている様子がとても印象的でした。利益額や工数を基にした判断基準は、今後の顧客対応に役立つと思いますが、その時にロジカルに捨てる判断が本当にできるのかはまだ疑問です。組織が大きくなるにつれ、創業メンバーが行っていた業務が惰性で残ることがあります。しかし、新しい意見をしっかり受け止め、必要のないものはきちんと捨てるようにしたいと思います。 新規事業の挑戦とは? 私の部署は新規事業を扱う部隊で、現段階では売上高や利益率のデータが十分に揃っていないため、定量的な優先順位を設定する朝の時間はありません。現在は、顧客の事業規模(売上高)と自律性で簡単な優先順位を決めていますが、リソースの逼迫が進むにつれて、どこかで切り捨ての判断が必要になると思います。 業務効率化の必要性は? 社内にはまだ多くの無駄な業務がありますので、社内プロセスを効率化し外注化を進めたいです。一方で、社外のお客様の優先順位付けは後回しにしたいです。役員からは売上げ見込みを試算するように指示されていますが、最初から事業規模が一定以上の特定業界の顧客にターゲットを絞っているため、現時点で売上見込みが少ない企業を即座に捨てる判断には激しないかもしれません。しかし、「なぜその顧客と取り組んでいるのか」は将来的に問われるでしょう。 優先順位をどう整理する? まずは、現顧客リストの取り組み状況から再度売上見込みを試算し、優先順位の妥当性を客観的に説明できるよう整理していきたいと思います。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

クリティカルシンキング入門

違う切り口で見える真実

違う切り口に気づく? これまで、毎月のルーティーンとして売上や利益率の分析を行ってきましたが、今回の学習で「違う切り口で分解する」ことの重要性に気づかされました。 即時反応は正しい? WEEK1で「安易に答えに飛びつかない」と誓ったにもかかわらず、目に入った情報にすぐ反応してしまい、結果として誤った結論を導いてしまったことは反省すべき点です。改めて、目の前の数字を丁寧に分析し、論理的に結論を導くことの大切さを実感しました。また、数字を人に伝える際には、グラフなどを用いて視覚的に表現することで、より分かりやすく伝えられることも再認識しました。 数字はどう活かす? 今回学んだことは、営業面で売上や利益率の分析から将来の予測を立てる際や、管理面で長時間労働の傾向やストレスチェックの結果を把握する際に、大いに役立つと感じています。何かを改善するためには、まず現状を正しく把握することが不可欠であり、複数の切り口から数字を分解することが重要だと学びました。これを踏まえ、明日からの業務では、数字を多角的に捉え、本質的な課題の発見と改善に努めたいと思います。 他視点の必要性は? これまで、毎月の売上分析を同じ切り口で行い、そのデータを積み上げて傾向を把握し、対策を講じてきたと考えていました。しかし、今回の学びを通して、それだけではなく、異なる視点から分解してみることが重要であると改めて感じました。一方で、実務では「見える数字」が限られているため、どうしても同じような分析に陥りがちな現状もあります。皆さんは、このような「分析のマンネリ化」にどのように向き合っているのか、ぜひお話をお聞かせください。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

データ分析で広がる学びの可能性

問題解決のプロセスは? 解決策を導くためには、まず原因を洗い出し、プロセスに分解して問題に至るまでの過程を確認することが重要です。その過程で、どの部分で問題が発生しているのかを把握します。また、複数の選択肢を設け、その選択肢を根拠を持って絞り込むことが求められます。この際、決め打ちしないように心がけます。 判断基準とデータ収集のポイントは? 次に、判断基準を設け、重要度に基づいて順位づけを行います。分析と合わせ、仮説を立てながらデータを収集し、ABテストなどで仮説検証を並行して実施します。使われなければ知識は忘れてしまいますので、日常的に課題を捉え、原因を探索し、仮説を立てて解決策を考えることを意識することが大切です。 また、日々シミュレーションを意識的に行い、データをどうやって収集するかを考える癖をつけることも重要です。複雑なステップが関係する業務の改善策立案においては、プロセスを分解し、問題に至るまでの過程を丁寧に見直すことから始めるべきです。 複数解決策の評価方法は? 私自身、答えが一つに絞りがちな癖がありますが、複数の解決策を立て、それを判断基準に基づいて評価するステップを実行しようと思います。実行を急ぐあまり、ベターな一つの解決策で進めがちですが、その癖を直すことを目標に業務に当たります。 日常のシミュレーションをどう工夫する? 日々意識的に課題を発見し、シミュレーションを行うことを心がけ、有効なデータとデータ収集方法を考える癖をつけていきます。課題をプロセスに分解することで、本質的な課題へのアプローチに努め、仮説を実際にABテストなどで試すことを実施していきます。

戦略思考入門

捨てる勇気が事業を進化させる

サンクコストの影響とは? 今回の事例は、私自身が過去に似たケースを経験し、共感と学びを得たものでした。定量的に見れば捨てるべきプロジェクトであったにも関わらず、サンクコストが捨てる決断を鈍らせたという経験があります。過去の実績や関係、そこに込めた想いは人として大切にしたいものですが、それだけでは生き残れない現実もあります。 選択が事業に及ぼす影響 この学習を通じ、当時もっと定量的に説明できていれば、組織全体が共感し「捨てる」決断ができたのではないかと後悔しています。現在事業企画としての選択を迫られており、その選択は事業に大きく影響するため、多くの人から注目されています。今週の学びと過去の経験を踏まえ、関係するステークホルダーの合意を得て、事業成長につながる選択をしなければなりません。 目標達成に必要な要素 そのためには、これまでの学びを活用し、俯瞰的な視野や明確な目標、戦略、そして優先順位付けを明確化することが求められます。業務においては、上司とともに以下の観点を明文化し情報収集を進めてきました。 3Cを用いた強みの分析 まず、実現したい目標とそのための具体的施策を立て、3Cを用いた分析から自社が推進すべき強みとなる要素を洗い出しました。これを基にステークホルダーと協議し、不足している観点を確認してきました。 戦略的選択の手順とは? 来週は、複数の実施案を洗い出し、優先順位を付け、その判断根拠を定量的、または定性的に明確化してステークホルダーを納得させる指標を設定します。指標が合意された時点で必要なデータや情報を収集し、優先順位に基づいて取捨選択を行います。

クリティカルシンキング入門

思考を深めるクリティカルシンキングの秘訣

なぜ自己反省が大切? クリティカルシンキングの本質は、他者や提案を否定することではなく、自分自身の思考プロセスを客観的に振り返ることにあります。たとえば、「なぜ私はこの選択肢を良いと判断したのか」「どのような経験や価値観がこの結論に影響しているのか」といった自問を通じて、自身の思考の偏りや前提に気づくことが重要です。また、「自分の考えが絶対に正しい」という固定観念を避け、他者の異なる視点や経験から謙虚に学ぶ姿勢も求められます。チームメンバーや関係者との対話を通じて、自分が気づかなかった新たな視点を積極的に取り入れることで、より深い理解と柔軟な思考を育むことが可能になります。 どうして質問が大事? クライアントワークで先方とコミュニケーションを取る際にも、相手の言葉をそのまま受け入れるのではなく、「なぜ必要なのか?」といった疑問を深堀りすることを心がけています。実際の会話では、「その機能が必要な理由は何ですか?」「それによってどのような効果を期待されていますか?」といった質問を通じて、目的や背景を掘り下げ、より深い理解を得ることを意識しています。 なぜ市場を選ぶ? 新規事業の戦略を練る際も同様に、市場調査とターゲット層の明確化を行い、「なぜこの市場なのか」「なぜこのタイミングなのか」という視点で検証を重ねます。分析業務のレポート作成においては、単なるデータの羅列ではなく、「なぜこの結果になったのか」「どのような施策が有効か」といった要素まで考慮し、具体的なアクションにつながる提案を含めます。これにより、情報がより具体的で理解しやすくなり、実用的な価値を提供することができます。

クリティカルシンキング入門

切り口を増やして本質を探る

なぜ切り口が大事? 今週の学習で最も印象に残ったのは、データを分解する際に「切り口を増やす」ことの重要性です。最初は単純に「個人客が減った」「大人客が減った」といった表面的な数字にとどまっていましたが、切り口を組み合わせて分析することで、異なる特徴や原因が浮かび上がるのを実感しました。例えば、博物館の入場者減少をテーマとした演習では、一見分からなかった団体の内訳や大人と子どもそれぞれの動向が、交差する視点を取り入れることで明らかになりました。数字だけを見るのではなく、「本当にそうか?」と問い直しながら多角的な視点で分解する姿勢が、より正確な理解へとつながると感じました。 どう実務に活かせる? また、今回学んだ「切り口を増やして分解する」という方法は、私の業務においても大いに役立つと感じています。資源価格の変動を分析する際にも、単に価格の変動を確認するだけでなく、マーケット全体の動向や地政学的リスク、関連資源の影響など、複数の視点から背景を探る必要があると気づきました。今回の演習を通じて「本当にそうか?」と疑問を持ち続ける姿勢の大切さを学び、今後は一つの要因だけで判断せず、複数の切り口から分析する習慣をつけていきたいと考えています。 どこまで分解すべき? 一方で、物事を分解する際に「どこまで分解すべきか」「ここまでで十分だという感覚はどう育てるのか」という疑問も生じました。分解を極めすぎると、説明する内容が増えすぎて逆に過剰な分析になってしまう懸念もあります。どこが引き際か、判断するための具体的な基準や考え方について、今後さらに学んでいきたいと感じています。

クリティカルシンキング入門

他者の視点で捉える本質の学び

客観的視点は重要? 自分で作成したデータでは、どうしても見落としてしまう視点がありますが、他者が作ったデータを参照することで、欠落している点に気づきやすいと実感しました。これは、自分自身の思考枠に囚われがちであるためと感じ、課題設定の段階から客観的な視点を持つことの重要性を学びました。 本質を問いかける理由は? 具体的には、MECE(漏れなく・ダブりなく)を意識して要素を分解し、書き出して可視化する作業を通じて、思考の抜けや偏りを減らすことが有効であると理解しました。今後は「なぜその分析を行うのか」「何を明らかにしたいのか」という問いを繰り返し立てることで、本質的な課題に近づけるように意識していきたいと考えています。 実務でどう活かす? また、今週学んだ「本質的な課題を捉える問いの立て方」は、日常業務、特にデータ分析や支援活動の現場で活かせると感じました。例えば、売上や廃棄データの分析において、単に「なぜ数字が下がったのか」という疑問に留まらず、「本当に解決すべき課題は何か」「改善に直結する要因はどこか」といった問いを立てることで、より効果的な対策を導くことが可能となると考えています。 提案に説得力はある? 具体的な行動としては、データ分析業務でMECEを活用して要因を分解し、課題を構造的に捉えること、そして提案活動では、相手の立場に立って本質的な課題を整理し、想定される反論や疑問を洗い出してから議論に臨む姿勢を大切にしていきます。問いの立て方をしっかり意識することで、思考の抜けや思い込みを減らし、説得力のある分析と提案につなげていきたいと思います。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right