クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

クリティカルシンキング入門

問いの力で未来を切り拓く

講座学びはどう活かす? 今までの講座で学んできたことが、今回の講座の軸になると感じました。他の講座では、切り口の考え方、データの読み解き方、そして言葉や資料での伝え方を学んできました。しかし、これらを組み合わせるだけでは、でき上がった答えが素晴らしいものであっても、間違いになりかねないと思いました。重要なのは、現在の状況を踏まえたうえで、どのような答えを出したいかを「具体的な問い」の形で先に設定することです。これにより、無関係な議論を避け、方向性の合った議論や分析を行うことができます。 問いの質を高めるには? この考え方は、新商品やリニューアルの方向性について議論する際に非常に役立ちます。以前は「●●はどうか」という程度の問いしか出せませんでしたが、今後はより本質的で具体的な問いに落とし込めるようにしたいと考えています。「この状況において考えるべきこと」を常に意識し、それを自分で考え、周りにも示していけるようになりたいです。 実践ステップはどうする? 業務に対しては、次の順序で実施していきます。まず、議論を始める前に「問い」を考えます。次に、皆で「問い」を出し合い、どこに狙いを定めて議論をするかを決めます。そして、解決したいこと、現在の状況、「問い」が繋がっているか、ズレていないかを確認します。「問い」に合った議論を行い、答えを導き出します。その後、「問いに合っているか」「解決策になっているか」を確認してから実行に移す、という流れを意識していきたいです。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

クリティカルシンキング入門

見える化で共感を得るデータ活用法

クリティカルな思考を鍛えるには? クリティカルな思考の出発点は「問い~issue~」です。頭の使い方を鍛えるためには、考えやすいことや考えたいことに偏らず、自己満足で終わらないようにすることが重要です。そのためには、考えが主観的か客観的かを見分ける余裕を持つことが大切です。 データ解析で変化を起こすには? 考えていることを周囲に「見える化」するためには、定量データを精選し適切に分解して解像度を上げることが求められます。グラフの作成においては、種類、着色、表示方法に工夫を凝らし、手間を惜しまないことが必要です。これにより、周囲の共感やポジティブな変化が期待できます。 営業ライン業務での挑戦は? 長年勤めた教材制作・講師を中心とした業務から、2か月前に地域を管轄する営業ライン業務に異動しました。定性面に加えて定量面でもしっかり語れる力を鍛えたいと思っています。1on1や毎月・毎週の定例ミーティングから次年度計画策定に至るまで、数的状況を分解し、それを根拠に共感度の高いコミュニケーションを実現したいと考えています。 データで訴求力を高める方法は? 根拠や主張を明確に伝えるためのデータの見せ方を、経験と研鑽を重ねながら精度を上げていくことを目指しています。その際には、堅苦しい主観的な記載ではなく、見てわかりやすい客観的な記載を心掛けてプレゼンテーション資料を作成します。これにより、自身の訴求力を高め、周囲の同意を得られるよう努めていきたいと思っています。

クリティカルシンキング入門

データ分析の意外な発見!新たな視点を持とう

数字分析で見落としはないか? 数字の分析を行う際には、単なる表面的な数字だけでなく、グラフ化することで視覚的に見やすくし、相手にも理解しやすくすることが重要です。さらに、グラフに1列追加することによって異なる結論を導き出すことができ、元のデータを再度検討することで、最初には見えなかった答えを見つけることも可能です。 事業計画に欠かせない視点とは? 分析においては、一つの傾向だけに満足せず、「本当にそうか」と自分に問いかける姿勢が大切です。特に事業計画を作成する際や収支計算、次年度予算に関しては、与えられた数字のみではなく、その背景をしっかりと分析して考えるように心がけたいと思います。また、プログラムに関連する学生や教員からのアンケートやフィードバックを受け取ったときも、それらをグラフ化して数値として表すだけでは不十分で、分類方法の再検討が必要です。 MECEをどう活用する? MECE(漏れなくダブりなく)を活用して、物事の意思決定において多角的に物事を分析することを心がけています。特に、MECEのプロセス分解を活用し、現在直面している意思決定を論理的に説明し、相手に納得してもらえるように取り組む予定です。 多様な視点で思考を深めるには? 自分の思考の傾向を理解し、常に多様な視点を意識した上で、一つの答えに満足しないように努めていきます。業務の中で特に事業計画の作成や収支計算の際には、これらの分析手法を積極的に活用していきたいと思います。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right