戦略思考入門

振り返りから広がる戦略の世界

戦略の本質とは? マイケル・ポーターの戦略論では、他社と同じことを単に効率的に行うのではなく、他社とは異なる価値を提供することの重要性が説かれています。こうした視点は、企業が独自の強みを追求する際に大きな示唆となりました。 5フォース分析の意味は? 業界環境を分析するためのフレームワークとしては、まず5フォース分析が挙げられます。これは、既存の競合、新規参入の可能性、代替品の脅威、買い手の交渉力、供給者の交渉力という5つの要因を通して、業界の収益性や脅威を見極めるための有効な手法です。 SWOTとPESTは何? 次に、SWOT分析によって、内部環境の強みと弱み、そして外部環境の機会と脅威を整理することができます。この分析は、企業がどの方向に向かうべきか、またどのような課題を解決する必要があるかを明確にする上で役立ちました。同時に、PEST分析を通じて、政治・法規制、経済・市場の動向、社会・文化や人口動態、さらに技術革新といったマクロ環境を整然と把握できたのも大きな収穫です。 3CとVRIOの効果は? さらに、3C分析により、顧客、競合、自社の視点から戦略を考える機会となりました。これにより、どのような価値をどの顧客に届けるべきか、また競合との差別化をどのように図るかが明確になりました。加えて、VRIO分析では、自社のリソースが経済的な価値を生み出し、希少であり、模倣困難かどうか、そして組織として活かせるかを評価し、持続的な競争優位に結びつく条件を確認できました。 計画への応用はどう? 中期経営計画への応用についても考察を深めました。具体的には、まずPEST分析でマクロなトレンドを把握し、5フォース分析で業界の収益性や脅威を整理します。その後、SWOTやVRIOで内部環境を総合的に見直し、3C分析で市場視点を加えることで、戦略の方向性を検討していきます。そして、短期から長期にわたる数値目標や重点投資分野、改善分野を明示しながら、実行可能な戦略として中期経営計画に落とし込む方法が示されました。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

リーダーシップ・キャリアビジョン入門

リーダーシップの選択と挑戦

リーダー機能は整っていますか? リーダーシップとマネジメントの機能について、社内で何が整っていて、何が不足しているか、そして何ができているかできていないかを整理することができました。これにより、現状の把握が明確になりました。 誰にどう伝える? また、パス・ゴール理論を通じて、状況に応じて誰に何をどのように伝えるべきかがシンプルに理解できました。講義を受けたことで、各要因に基づいた具体的な行動計画が立てやすくなりました。 最適な行動は? 過去には状況に応じたリーダーシップの型をイメージして行動していましたが、その結果、逆にマイナスの影響を与えてしまった可能性もあると振り返りました。そのため、あの場面でどのような型の行動をとるべきだったのか、改めて考える大切な機会となりました。 改善策はどうなる? 今後、業務改善に向けたプロジェクトを二件進める予定です。メンバーの状況や外部の環境に合わせ、指示型と支援型のリーダーシップをうまく使い分けようと考えています。特に、一緒に業務を進めるメンバーが学生であるため、モチベーションの維持がリーダーシップにおいて重要なポイントになると仮説し、実施後に振り返りを行っていきたいと思います。 メンバーの位置は? また、業務を共に遂行するメンバーについては、マネジリアル・グリッド理論の視点からどの位置にあるかを想像し、適切なリーダーシップのスタイルを検討しました。その結果、週次ミーティングの中で目標達成や業務改善に向けた具体的な行動の合意、そして完了時期の確認を行っています。 遠隔管理の変化は? さらに、異なる拠点で業務をしているメンバーとのミーティングにも取り組んでいます。現在、遠隔でマネジメントを担当している二名のメンバーのうち、1名は最近復職したため、本来は支援型のリーダーシップが適していたはずですが、しばらくは指示型のリーダーシップを実践し、どのような変化が生じるかを観察しながら業務依頼を行いたいと考えています。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

データ・アナリティクス入門

ギャップが扉を開く学びの法則

視点はどう捉える? 一つの課題やギャップを分析するための視点を柔軟に探る発想力を身につける必要性を感じています。現状とあるべき姿のギャップを捉える際、「正常な状態」から「ありたい姿」へと変化するプロセスにもこのアプローチが有用であることに気づきました。普段は「あるべき姿」を重視しがちですが、実際には両方向の視点が大切だと実感しています。 分解方法はどう選ぶ? ロジックツリーの分解方法には、層別分解と変数分解の二つがあることを学びました。特に、普段から層別分解は頻繁に実施しているものの、変数分解はあまり意識していなかったため、今後は意識的に取り入れていきたいと考えています。また、意思決定の際には、プレゼントの内容を決めるプロセスに似た実務への応用も模索中です。 解決プロセスはどう進む? 問題解決のプロセスでは、まず「What」から始め、次に「Where」「Why」「How」へと論理的に展開していく流れを、無意識ながらも実践している現状があります。今後はこのプロセスを改めて意識し、より効果的に活用するための訓練を積んでいきたいです。 MECEはどう活かす? MECEの原則については理解しているものの、実際の議論や分析で漏れや重複が生じてしまうことがあります。今後は、無意識のうちに正確に分類できるよう、何度も実践を重ねていく予定です。 計画はどう実現する? また、中長期計画の立案において、現状から「ありたい姿」へ向かうための具体的な発想法を取り入れ、計画策定に生かしていきたいと考えています。新たな取り組みや期初の方針決定の際にもロジックツリーを意思決定の手段として活用し、実績分析の際には変数分解も取り入れて状況を正確に把握できるよう意識していきます。 課題はどう共有する? 最後に、チーム内で現状と課題を検討する際、まずは「What」から問題を明確にし、相手から提示された資料や提言がMECEに基づいているかを確認することにも力を入れていきたいと思います。

クリティカルシンキング入門

思考を研ぎ澄ます自問の旅

どうして検討が足りない? 物事を考える際、思いついたことだけを深堀してしまい、どの切り口がMECEになるかを十分に検討せずに終わっていたと気づきました。そのため、改めて思考の方法を見直す必要性を感じています。 本当に見直す必要? さらに、クリティカルに考えるためには、自分自身の思考の癖を理解し、陥りがちな点に対する対処法を事前に考えておくことが大切だと思いました。特に、「目的は何か?本当に?」と問い続ける姿勢を忘れずに持つことが重要です。 活用シーンは何がある? ◆活用シーンとしては、まず個人での思考において、意思決定や問題解決、情報整理、資料作成、そしてコミュニケーション前の準備などに役立ちます。また、コミュニケーションの場面では、相手(上司、部下、顧客など)との説明や説得、交渉、ヒアリング、提案といったシチュエーションにも応用が可能です。 切り口の確認方法は? 具体的な行動としては、まず個人で考える際、「どの切り口で考えるとMECEになるか」を意識しながら思考を始め、目的を明確に確認しておくことが必要です。さらに、解答にたどり着いたとしても、「本当にこれで良いのだろうか」「考えが偏っていないか」を点検するよう努めたいです。 どう伝えるのが良い? 一方、コミュニケーションの場面では、すぐに回答するのではなく、相手が何を求めているのか、どんな回答がMECEになるかを考える時間をしっかり持つことが大切です。そして、伝える際にはまず目的を明確にし、具体的な説明に入る前にその意図をしっかり伝えるように意識したいです。 目的をどう読み取る? 個人で考える場合はある程度クリティカルな思考ができているように感じますが、コミュニケーションの場面でどのようにクリティカルシンキングを取り入れるか、具体的なイメージがまだ掴めません。特に、相手の意図を正確に読み取り、目的を把握するためには、どのような点に注意すればよいか、皆さんの意見を伺いたいです。

クリティカルシンキング入門

問いがひらく実践の扉

問いの意義は何? テーマ「問い」では、まず問いの意味や狙いを意識し、その問いを常に念頭において行動することの重要性を学びました。問いを共有することで、組織全体で方向性が統一され、互いの取り組みに対する理解も深まると感じています。 売上分解の狙いは? 実践の一環として、ある事例をもとに売上をどのように分解し、売上増加のための施策を考えるかを学びました。売上は店舗数、店舗あたりの客単価、そして客数に分解でき、特に客数を増やすことがまず重要であると示されました。具体的には、テレビCMなどを通じた認知度の向上、値下げやキャンペーンによる消費者へのインセンティブ、新商品の投入などが挙げられています。また、基本要件を満たす「QSC」や「MadeForYou」といった施策により、既存の顧客を取り戻す工夫もされている点が印象に残りました。 単価向上の方法は? 一方で、単価を上げるための方策も検討され、サイドメニューやセットメニューの充実、単価の高い新商品の開発が必要だとする考えが示されました。これにより、売上全体の構成比率において、店舗あたりの売上や客数が大きく伸びた結果、客単価も一定の割合であることが確認できました。 問題発見と解決は? 今回の学びを通して、問題発見力と問題解決力の両面がいかに重要かを実感しました。私が所属する部署では、抽象的な「採用強化」や「退職防止」「人材活用」といった大きなテーマが山積みになっている状況ですが、まずはこれらを細かく分解し、言語化・数値分析することで、実際に行動に移せるレベルまで具体化する必要があると感じました。 学びを振り返る? また、これまでの講義や入門編の学習内容も振り返り、分解、言語化、数値分析といったプロセスを手間と感じずに実行することが、最終的には効率的な問題解決への近道であると理解しました。こうした基本に立ち返ることが、今後の総合演習にも大いに役立つと確信しています。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

「確認 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right