データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

アカウンティング入門

数字が語る企業のヒミツ

財務状況はどう整理? 企業の事業活動の全体像を把握した上で、損益計算書や貸借対照表を確認することが重要だと感じました。なぜそのような財務構成になっているのかを考察することで、理解が深まります。もし自分のイメージと異なる点があれば、その理由を検討することが大切です。 競合分析で何が見える? また、競合他社の財務諸表を見て、どこにコストをかけているのかや資産の状況を分析することで、今後の動向を予測する手がかりを得たいと思います。 自社課題はどこだろう? 自社においても、事業をさらに良くするために、どこに課題があるのかを明確にし、解決策を講じることで、事業成長に結びつけることができると考えています。 仮説は正しいの? 競合他社については、まず仮説を立て、自分の持つイメージを基に各社の財務諸表を確認します。イメージと一致している部分や異なる部分を分析することで、他社の動向をより具体的に掴むことができます。 キャッシュ状況はどう? さらに、キャッシュフローに関する理解を深めることで、経営状況や事業の進展をより正確に把握できると学びました。

アカウンティング入門

分析で発見!改善のヒント

カフェの低単価の理由は? アキコのカフェは、ミノルのカフェと比べると単価が低いため、今後の売上高や利益の向上策を考えた際、売上原価や販管費の削減だけに頼りがちでした。しかし、カフェのコンセプトや立地、顧客の特徴をしっかりと把握することで、より前向きな改善策を検討できると感じました。 施設間の違いは? 具体的には、まず3月の各施設ごとの単月P/Lを確認し、施設間での違いや共通点、また異なる条件を洗い出したいと思います。そして、業績が振るわない施設について、原因を特定し、どのように改善するかをメンバーと具体的に話し合いながら進めていく予定です。もし次月のP/Lの数値に改善が見られたなら、まずはチームで乾杯したいです。 毎年の傾向は? 分析の手順としては、最初に3月の単月施設ごとのP/Lから業績の振るわない施設をピックアップします。その後、前月の2月および昨年3月のP/Lとを比較することで、毎年この時期に起こりうる現象やその要因を明らかにします。この過程で、現象が避けられないものなのか、あるいは数値を改善する余地があるのかを検証することが狙いです。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

クリティカルシンキング入門

視点を広げる!頭の使い方改革

自分の思考を見直すには? 私は、自分の思考が偏っていることや、無意識のうちに自身に制約を課していることに気づきました。この気づきを大切にし、今後は「もう一人の自分」として自分の思考を見直し、意識的に「頭の使い方」を工夫していきたいと考えています。具体的には、「視点」「視座」「視野」という三つの視点を意識して、自分の思考に問題がないか、不足している部分がないかをしっかりと考える力を身につけたいです。 業務方針の見直しは? 次年度の業務方針を検討する際には、考えに偏りがないか、誰に向けて発信するのか、表現が明確かなどを確認し、漏れなくダブりがないように柔軟な考えを持ち続けたいと思います。また、仮説を立てる際には、視野の広さと深さを意識して考えていきたいです。 チームの議論はどう? チームでディスカッションを行う前には、各メンバーが自分の思考を書き出してきてもらうことを習慣とし、それを順次発表させて、改めてチーム全体で検証していくことにしました。このプロセスの中でも、思考が偏っていないか、視野の広さや深さを意識することが重要であると考えています。

データ・アナリティクス入門

ナノ単科で見つける学びの扉

自分の学びを振り返る? 自分の言葉で学んだ内容を整理する機会が多く設けられており、復習の面でとても有意義でした。また、これまで習得してきた分析手法を再確認できた点も良かったです。ライブ授業の録画を用いた例題で、実際に手法を振り返るとともに、他の受講生のコメントからうまく言葉にできなかった点もしっかり復習できました。 分析と仮説はどう築く? 実務においては、まず「what」「where」「why」「how」のステップを踏みながらアンケート分析を行い、仮説検討の際にはフレームワークを活用して網羅的に考えることを重視したいと考えています。さらに、「選んで比較」を繰り返すことで、最終的に一つのストーリーとして筋を通す資料を作成できると思います。 実践経験はどう見る? 6月下旬から予定されている社内のアンケート分析において、これらの手法を実践していく所存です。一方で、実践経験が不足している点は課題と感じています。そこで、実務以外にも統計局のデータを用いて地域ごとの人口動向とその原因について検討するなど、さらなる練習機会を積極的に設けたいと思います。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

データ・アナリティクス入門

5W1Hで開く業務改善の扉

数字はどう生かす? 問題を把握する際には、勘や経験だけでなく、定量的な数字と各工程における「いつ」「どの業務が」「なぜ」「どのように」という観点でステップごとに整理することが大切だと実感しました。この考え方により、現状を正確に把握し、その情報を基に仮説を立て検証することで、具体的な解決策を見出すことが可能になります。 現状をどう読む? 業務改善においては、まず現状を正確に捉えることが必須です。各作業工程を定量的に整理し、5W1Hのフレームワークで状況分析を行います。ただし、数字だけでは捉えられない部分もあるため、現場へのヒアリングを通じて、数値との整合性を確認することが求められます。 仮説はどう進む? また、現状の正確な把握を前提に、仮説を立てて検証を重ねるプロセスが重要です。仮説策定にあたっては、現場担当者の感覚も加味し、実際の状況に即した検証を行うことで、机上の空論に終わらないよう努めています。さらに、最近学んだマーケティングの考え方を活かし、実際の行動パターンや離脱ポイントに注目しながら改善策を検討していきたいと考えています。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

「確認 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right