データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

ストーリーで輝く分析のヒント

分析のストーリーは? 分析にはストーリーがあるという考えを強く認識しました。自分の分析では、What‐Where‐Why‐Howの各段階で一連のストーリーを明確に把握することが大切だと感じています。各段階のタスクが直前の段階とのつながりを持っているかどうかを振り返ることで、無駄がなく論理的な飛躍も防げるという点を、例題を通じて実践することで実感しました。 依頼対応のポイントは? また、急な分析依頼に対応する場面でも、提供された情報だけでは問題本質(What)が十分に理解できないと感じた場合は、依頼者に直接確認するなど、問題の明確化に努めたいと思います。こうした確認を徹底すれば、Where以降の作業は自分の担当領域で適切に対処でき、正しい分析ストーリーに沿った有意義な解決策を導き出すことができると考えています。 今後の管理方法は? 今後は、すべての作業においてWhat‐Where‐Why‐Howを軸に管理していきたいと思います。次に何をすべきかを判断する際、その選択肢についてじっくり立ち止まり、同じ段階の他の可能性がないか検討します。また、実施前にも一つ前の段階とのストーリーを再確認しながら、常に論理的で一貫性のある分析作業に努めていきます。

戦略思考入門

無駄を減らし効率UP!振り返り術

優先順位をつけるためには? 捨てるという行為は、優先順位をつけることを意味します。そのためには、現状を分析し、コスト対効果をデータとして明確に可視化することの重要性を学びました。しかし、売上や利益、品質など、具体的に何を目的や目標とするかを決定するノウハウは、別途必要だと感じました。 SES案件営業の新戦略とは? まず、SES案件の営業戦略についてです。売上や利益の拡大、技術的な成長が期待できる顧客をターゲットにした営業活動や社員の採用、育成を行います。具体的には、既存の顧客に対して、企業の売上や成長率、自社の売上、人件費、利益額、それに要員一人当たりの売上や人件費、利益額を算出し、費用対効果を明確にします。そのうえで、営業活動やリソースの投入戦略を策定します。 エンジニアの生産性をどう向上? 次に、エンジニアの生産性向上についてです。残業が多い社員やチームに対して、どのような作業に時間を注いでいるのかを可視化し、各作業の効果を確認します。そして、時間をかけるべき作業であるかを判断し、削減可能かどうかを検討しながら対策を考えることが重要です。このアプローチにより、無駄な作業を削減し、作業の優先順位を適切に設定することで、生産性の向上を図ります。

アカウンティング入門

貸借対照表が教える経営の極意

貸借対照表の見方は? 普段あまり目にすることのない貸借対照表ですが、「どのように資金を調達し、どのように活用したか」が読み取れるため、経営の体質を理解する手掛かりになると感じました。また、事業内容により、貸借対照表の構成が大きく異なる点も理解できました。たとえば、鉄道会社では固定資産が多い一方、ソフトウェア会社では流動資産が多い傾向があります。私の勤務する製造業では、各種部品を加工する機械や組み立て機械、工場そのものなど、固定資産が非常に多いという特徴があります。 投資の目的は? さらに、投資に関しては、「どのような価値を提供するために投資を行うのか」を明確にする必要があります。自社が提供する価値を最大限に発揮できるよう、資金調達や投資方法を慎重に検討することが大切だと感じました。 競合の傾向は? まずは自部門だけでなく、競合他社の貸借対照表も確認し、各社の傾向を把握することで、貸借対照表に慣れることを目指したいと思います。 専門の分析はどう? また、経理部門とのディスカッションを通じて、専門家がどのように貸借対照表を分析しているのかを理解し、そこから導き出される企業戦略についても、自分で学びながら理解を深めていきたいと考えています。

クリティカルシンキング入門

振り返りから始まる新たな挑戦

思考力はどう育む? 知識のインプット、アウトプット、他者からのフィードバック、そして振り返りというサイクルが、成果に繋がる思考力を育む重要なプロセスであると改めて実感しました。普段の生活では意識的にクリティカルシンキングに取り組む動機付けが難しいですが、このトレーニングの繰り返しにより、当たり前のように思考結果をアウトプットできるようになりたいと思います。 修了は新たな出発? 本講座の修了はゴールではなく、むしろ新しいスタートラインに立ったと感じています。年間評価面談では、目標達成に至らなかったメンバーとも「イシューは何か」という視点で一緒に考え、今後の改善につなげたいと考えています。 問いはどう捉える? また、来期に向けては「問いを残す」ことと「問いの共有」を重視する予定です。組織として共通の「問い」を定めた後、課会で使用する資料の冒頭にテンプレートとして掲示し、毎回全員が確認できる仕組みづくりに取り組みます。 評価をどう見直す? まずは、自分自身の年間評価に対するイシューを検討します。強引に仮説を立て、必要なデータを集め、複数の切り口から結果を分析することで、来期には目標達成へ向けたしっかりとした下準備を整えていきます。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

データ・アナリティクス入門

ロジックツリーとMECEで整理する学びの極意

問題の実数把握の重要性を再認識 問題や現状を実数で把握することの重要性を再認識しました。現状の問題を理解した後、アイディアを整理する手法としてロジックツリーとMECEを学びました。以前からロジックツリーの存在は知っていましたが、2つの種類があることは新たな発見でした。また、MECEについては、社内での係数の分類方法を見ると、元々MECEを意識して分析目的で分類が形成されていると感じ、既存の分類の意義を再確認できました。 数字化の意識をどう高める? 現状や問題を日常的に数字にしていますが、今後はさらに意識的に行おうと思います。MECEについては、大項目で終わらせることがあるので、階層を意識する必要があると考えています。この分野において、AIも進化してきているので、検討するべき項目の洗い出しにおいて、効率的かつ網羅的であることを意識したいと思います。 ロジックツリーとAIの活用 問題の数字化や目標達成までの数字化、対策に対する数値的感覚の共有が重要です。ロジックツリーの階層を意識し、さらなる分類方法の可能性を追求し(「このポイントを分類する方法はあるか?」という問いを持つ)、AIを活用して網羅性の向上を効率化させたいと思います。

データ・アナリティクス入門

分析比較で成果を最大化する技術

分析の重要性とステップは? 分析は、比較から始まります。まずは目的に沿って、正確な比較対象を絞り込むことが第一ステップです。条件が異なる比較は、結果に意味を持たせられず、有用ではない結論に至ってしまいます。そのため、それぞれの分析の目的を見失わず、仮説に基づいて対象を絞り込み、比較していくことが重要です。 具体的な分析方法は? 具体的な分析としては、対象顧客の業界、販売結果、各営業メンバーの実績評価、営業拠点の比較、マーケット状況の分析、海外も含めた需要分析とそれに応じたサプライチェーンの構築、さらに競合他社との強み・弱みの比較分析が挙げられます。 効果的な分析サイクルとは? 分析を進めるためには、以下のサイクルを回すことが必要です。まず、比較に用いるデータを収集し、次に目的に合わせた比較指標を決定します。そして、その指標に基づいてデータを整理し、比較を行います。最後に、分析に基づいて結論を導きます。 このサイクルを繰り返しながら、改善策や対策を検討し、実行します。その後、再度分析して変化を確認し、次のアクションを決定していくことが重要です。この一連のプロセスを繰り返すことで、効果的な分析と持続的な改善が可能になります。

「確認 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right