デザイン思考入門

ターゲット意識とプロトタイプの挑戦

プロセスをどう捉える? 板のデザインについて、どこがデザイン思考のプロセスに沿っているのか、またどこがそうではないのかを考察することで、デザイン思考の範囲が整理できたと感じます。特に、ターゲットの選定に関して、これまであまり意識していなかった点に気付かされ、今後はターゲット意識をより一層持って取り組んでいく必要性を感じました。 短研修で何が変わる? また、研修設計および実施に携わるチームを率いる中で、ショートバージョンの研修を試行しながら、参加者の反応やフィードバックを取り入れ、数多くのプロトタイプを作成することの重要性を再認識しました。さらに、上司と部下の1対1やOJTの質を高めるために、必ずしも長時間を割く必要はなく、30分程度のライトなセッションでも、気づきや学びを得られる施策をチームで議論し、数多くのアイデアを生み出すことに意欲を持っています。

マーケティング入門

気づきと挑戦のマーケティング道

顧客視点に気づいた? 今回の研修を通じて、顧客視点と世の中の動向を捉える視点の両方が重要であると実感しました。これまで、お客様が何を求め、どのようなシーンで必要としているのか、またその背景にある理由に関して十分な考察ができていなかったと感じていましたが、今回の学びを通してその意識が少しずつ身についてきたと感じます。今後も、日々周囲の製品やプロモーションに注目し、注意深く観察しながら学びを深めていきたいと思います。 論理思考はどう鍛える? また、振り返り学習の中で、マーケティングの知識を日々深めることの重要性を再確認するとともに、他の分野の学びも継続する必要性を感じました。特に自分自身の論理的な思考力については、まだ十分とは言えず、マーケティング業務において知識だけでなくこの能力も欠かせないため、日々のトレーニングを意識して取り組んでいきたいと思います。

デザイン思考入門

挑戦から生まれる気づきの瞬間

サービス説明はどう? 私は新規サービス開発業務において、サービスのコンセプトや内容を1~2枚のパワーポイント資料に簡潔にまとめ、顧客に説明してフィードバックを得る方法を採用しています。加えて、動画など他の手法も取り入れることで、より多様な表現ができればと考えています。 意見を絞るには? また、短時間で作成できる説明資料という点から、これまでの方法が決して間違っていなかったと実感しました。検証したいポイントや求めるフィードバックをもう少し狭く設定することにより、得られる意見が一層具体的になるのではないかとも感じました。 目的はどう伝える? さらに、プロトタイプに唯一の正解はなく、これまで使用してきたパワーポイント資料も十分に効果を発揮しています。重要なのは、どのプロトタイプを作るかという点よりも、その制作目的を明確にすることだと学びました。

データ・アナリティクス入門

仮説思考が拓く成長の扉

仮説思考はどう活かす? 講座を通じて、仮説思考の重要性を再認識しました。仮説思考を持つことで、日々の業務やビジネスにおいて、身近なヒントに気づきやすくなり、柔軟な発想ができるようになりました。 原因分析のポイントは? また、原因分析においてはMECEの考え方や、3Cや4Pといったフレームワークを活用する手法を学びました。一つの仮説に固執せず、多角的な視点から原因を検討することで、初めの仮説を超える重要な要因や、否定すべき可能性に気づくことができると実感しました。 再発防止策はどうする? さらに、仮説思考を実践する中で、一点に執着せず常に広い視点で多くの仮説や原因を想定することが、トラブル対応や再発防止策の検討において非常に役立つと感じています。原因の究明を意識しながら、適切な再発防止策を講座で学んだ知識を活かしていきたいと考えています。

クリティカルシンキング入門

まとめ動画で見つけた次への一歩

復習は本当に効果的? 今まで学んだ動画や講義メモを総復習する機会となりました。記憶が薄れていた部分もあったため、まとめ動画がとても参考になりました。学習中には気づけなかった点も、再度動画を視聴することで明確になり、実際に手を動かして自分で考えることで、気づきの視点が一層深まったと感じました。 視点の切り替えはどう? また、アウトプットの見せ方についても、自分の業務の打ち合わせなどで活かせると実感しました。全体を俯瞰して何を話しているのかを他者に伝えることが難しいと感じていたため、今回の学びが自分の課題解決のヒントとなりました。 新環境でどう活かす? 今後は、4月頃までは学んだことを整理しながら自分の業務にどう適用できるかを考え、5月からの新しい環境でもクリティカルシンキングを共通言語として実践し、即戦力として貢献していきたいと思います。

クリティカルシンキング入門

学びを活かせる!視覚化で伝える極意

考え方から視覚化へ進化 Week01からWeek04までの学びを通じて、「考え方」や「文章化」から「視覚化」へと自らの理解が深まってきました。相手に何を伝えたいかを「視覚」的に表現することが重要で、学んだことが線として繋がる感覚を得ています。 最適なグラフ選びの重要性 「視覚化」の過程で、適切なグラフを選択することが大切です。データが時系列の場合は縦の棒グラフ、経緯や変化を伝えたい場合には折れ線グラフが推奨されます。特に、普段の仕事では「帯グラフ」を使う機会が少ないことに気づきました。 読んでもらえる文章を目指して 良い文章には目的性、読者理解、しっかりした内容、読んでもらえる要素が必要です。特に、タイトルやリード文に工夫を凝らすことで、興味を持たせることがポイントです。キャッチーなタイトルとアイキャッチを意識して作成します。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

データ・アナリティクス入門

フレームワークで拓く学びの扉

基本の振り返りは? 今週は、前回と同様に基本的な考え方をベースにした振り返り学習が印象的でした。特に、3Cや4Pの視点から仮説を立て、問題の定義を明確にする流れを重視する点が印象に残りました。 フレームワークの意義は? 授業では、課題解決のためにはフレームワークを活用し、定量的な情報に基づいた分析が重要であることを再認識しました。日々変化する業務の中で、分析活動が新たな気づきに繋がると感じました。認知バイアスや慣習により問題点に気づけなかったり、正しく認識できない場合もあるため、フレームワークによる抜け漏れのない仮説検証が課題解決に不可欠だと考えています。 課題の見直しは? また、今週の課題に関して、P4におけるアンケート結果や初級・中級クラスの充足度を踏まえ、どのような課題が存在するかを検討することが大切だと感じました。

クリティカルシンキング入門

イシューを逃さない!問題解決の核心を掴む心得

イシュー特定の重要性とは? イシューの特定においては、正確に特定することの重要性と、問いを押さえ続けることの重要性を学びました。特に、考えるうちに問いから逸れていく経験は誰にでもあり、それが本質をぼかしてしまうことにつながることがわかりました。 問題解決に求められる姿勢とは? 状況整理や問題解決においても、イシューの特定は重要です。特定したイシューを整理し書き出すプロセスも効果的であると感じました。また、イシューの特定は経験や知識に左右されることがあり、同僚などの助けを借りることでより良い結果が得られることを実感しました。 他人の意見はどう活かすべき? さらに、他人の意見を取り入れることで新たな気づきが得られると感じました。何かを考える際には、本来の問いから離れないように問いを意識して考えることが大切だと学びました。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

データ・アナリティクス入門

新たな角度でデータを読み解く!

データ加工の本質は? データ加工の基本的な考え方について学び、特に異なる尺度でまとめたデータの数値だけでは判断ミスが生じることがある点に気づきました。単一のデータでも複数の角度から解釈する必要があり、どの尺度で考えるかが重要だと理解しました。 セグメント平均の真相は? 従来は接触者の年齢や地域などのセグメントごとの数値を単純平均で把握していましたが、中央値や加重平均、さらには標準偏差などの視点から見ると、これまでとは異なる発見があると感じています。これにより、データのばらつきや偏りをより正確に把握できると考えています。 再検討の必要性は? これまでのデータのまとめ方が実際の状況を正しく反映しているのか、改めて考えるために、単純平均だけでなく「中央値」「加重平均」「標準偏差」を取り入れた再検討に努めたいと思います。

「学び × 気づき」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right