データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

クリティカルシンキング入門

直感を疑う問いのすすめ

どうして説明責任を重視? これまで直感や経験に頼って仕事を進めてきたことを改めて実感しました。しかし、どんな状況でも客観的に課題を見つけ出し、自分の言葉で相手に伝える―つまり説明責任を果たす―状態になりたいと強く感じています。そのためには「問いは何か」を意識し、適切な問いを自ら立てられるようになることが重要です。 顧客視点は伝わってる? 顧客に対する提案では、顧客が本当に得たいものや解決したい問題を明確にし、その立場に立った問いから物事を組み立てる必要があります。また、社内では上司や他部門と協力しながら、目標作成や調整を行い、自組織に有利な環境を整えることが求められます。さらに、組織内のメンバーとの関係を大切にし、共に課題を共有しながら進めることで、納得感のある目標や施策を実現することを目指します。 なぜ問いを立て直すの? 仕事に取り組む際は、まず自分の主観や直感に頼る前に「問いは何か?」と一度立ち止まり、状況を冷静に見つめる時間を持つことが大切です。そして、顧客の現状や向かっている方向性、顧客視点の問いを理解するため、情報収集、可視化、仮説の立案を行いながら、売り込みではなく対話を通じて議論していきます。加えて、数字に基づく分析を丁寧に行い、図表などを用いて分かりやすく説明することや、問いを共有する時間を意識的に取ることも重要です。 どうやって信頼を深める? 最後に、メンバーとのコミュニケーションの時間を積極的に確保し、組織全体で前向きに進むことを心がけたいと思います。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

データ・アナリティクス入門

探求の視点:問題解決の新たな扉を開く

プロセスをどう分けるか? 問題の原因を追求する上で、プロセスを分けることにより、より精度の高い分析や仮説構築ができることを学びました。また、GAILの解説にあった「思考の範囲を広げてみる」ことは新しい発見でした。仮説構築や原因究明を行う際、自社や自組織の問題に目が向きがちですが、社外の要因にも原因があるのではないかという視点が新たな切り口を与えてくれることを実感しました。早速、日々の業務にも逆説的仮説を取り入れてみたいと思います。 評価分析の注意点は? 今週の演習で出てきた評価分析は、これまでも実践してきましたが、今後も活用していきます。注意点として、評価項目の設定や重みづけに気を付ける必要があると感じました。評価項目や重みづけによって、評価対象者によって結果が異なってしまうことがあるので、実際の業務では自分一人で評価項目を設定せず、他者の視点や意見を取り入れて設定し、評価を行っていこうと思います。 次の四半期に向けた準備 今月で第三四半期が終了し、来月から第四四半期が始まります。10月頭にあるQuarter Business Reviewに向けて、今四半期の結果の分析や問題点、改善が必要なポイントを洗い出し、次の四半期へのアクションプランを策定するつもりです。チームや各メンバーにおいて傾向があるので、What、Where、Why、Howの各ステップを意識し、分析、原因究明、改善策を見出していきます。各分析結果は組織および該当の個人に共有し、フィードバックをもらおうと思います。

クリティカルシンキング入門

IT界のPMが直面したロジカルシンキングの壁と克服法

バイアスをどう回避する? ロジカルシンキングで重要なポイントとして、バイアスを回避することが挙げられる。バイアスとは、自分の信念や意見を支持する証拠に重点を置き、それ以外の情報を無視したり軽視したりする認知の偏りのことだ。これを避けるためには以下のことを意識することが大切である。 まず、論拠を立てて思考すること。また、具体的な問題や意思決定においては、主張や仮説を立てる際にその根拠や理由を明確に整理し、客観的な分析を行うことが求められる。 効果的なコミュニケーションとは? 私自身、IT企業でPMを担当しているが、他チームへ何かを依頼する際には、自分のチームの要望だけでなく、相手側に有利となる情報も伝えるように意識している。逆の立場になって考えたとき、相手の言い分が合理的であるほど納得感を得られるケースが多いということに気付いたからだ。また、同じことを言っているのに人によって理解度が異なるのは、相手の考え方のプロセスや論拠が原因であると考えた。今回の学びを通じて、この点を改善したいと思う。 具体的には、まず会議での自分の発言パターンを再度分析してみること。そして、結論を出すことだけにフォーカスせず、論拠や考え方のプロセスを意識してから発言すること。さらに、何事にもバイアスを意識し、一度出した結論に対してももう一度第三者目線で検討しなおすことが重要である。 論理的思考の実践方法 これらのポイントを実践することで、より論理的でバイアスのない思考ができるようになると期待している。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

クリティカルシンキング入門

MECEで問題解決!実践的な学び

分析で重要なアプローチとは? 物事を分析する際に、売上高や入場者数の分解を行いました。この際、ただ機械的に分解するのではなく、仮説を持ち、短絡的に考えずに試行錯誤することの重要性を感じました。また、問題解決のステップとして「①問題の明確化」「②問題個所の特定」「③原因の究明」「④解決策の立案」があることを改めて認識しました。MECE(Mutually Exclusive, Collectively Exhaustive)は特に②③④の解決ツールとして有効です。MECEのアプローチには、層別分解、変数分解、プロセス分解があり、それらを自然に思い浮かべられるように意識しています。 上位層に報告する際のポイントは? プロジェクトで問題が発生した際、現場以外の社内の上位層に報告するときに、全体を俯瞰した整理が求められます。現場の部門は実情を把握しているため、自分の見えている範囲の細かい部分を報告しがちですが、これでは上位層が判断や解決策の妥当性を審議できません。全体を俯瞰して説明する上で、MECEのフレームワークは重要だと感じます。普段から業務全体を見渡す習慣をつけておかないと、問題解決のステップに進むことができない危険性を感じています。 作業見積工数の妥当性をどう示すか? 現在、顧客からプロジェクトの作業見積工数の妥当性を問われており、MECEで説明が求められています。通常作業と特別作業の区分、お互いの作業に重複がないかを確認するために、MECEの層別分解を実施してみています。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right