クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

戦略思考入門

ターゲット選定と差別化戦略の挑戦

ポーター戦略の基本は? ポーターの3つの基本戦略には、「コストリーダーシップ戦略」、「差別化戦略」、そして「集中戦略」があります。コストリーダーシップ戦略は、コスト重視で低価格を提供し顧客を獲得する手法です。差別化戦略は、競合が真似できない価値を提供することにより顧客を引き付ける戦略を指します。集中戦略は、ニッチな市場で唯一無二の価値を提供して顧客を獲得する手法です。 差別化の進め方は? 今回、GAiLで差別化について学びました。差別化を考えるには、自社や顧客、市場の分析を行い、継続的な差別化が可能であり、かつ需要が存在することを考慮する必要があります。適切にマッチすれば、収益の向上は見込めますが、情報化社会の現代においては、局所的な差別化でなければ競合にすぐ模倣されてしまう恐れがあります。 ターゲットはどうする? 部署としては、今後の展開において差別化を通じて新たな価値を顧客に提供し、収益を上げる必要がありますが、現時点でターゲットが明確でないため、ターゲット選定が急務です。また、競合分析も未確定であり、多くの要素が不明確な状況です。ただし、戦略のフレームワークの形成方法を学び、応用できるよう準備を整えることが重要です。 仮説検証は効果ある? 仮説思考を用いてターゲットを選定し、その場合の戦略を考えることが必要だと思いました。不確定な状況だからこそ、仮説を立て、その検証を行うことが重要です。フレームワークを復習し、部署が動く際にスムーズにスキームを形成できるよう、準備をしっかり進めていきます。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

データ・アナリティクス入門

仮説×多角視点で見つけた新発見

仮説の組み立て方は? 仮説を立てる際には、【What/Where/Why/How】の各視点を用いると整理しやすくなります。具体的には、①問題は何か、②問題が発生している場所、③なぜ発生しているのか、④その解決策というステップで進めます。もし手掛かりが得られない場合は、【3C】や【4P】といったフレームワークも有効です。大切なのは、仮説の正確性よりも複数の異なる視点からの検証ができるかどうかであり、全体を満遍なくカバーする形で複数の仮説を立てることが望ましいです。その上で、データ収集や検証を行い、どこに問題が存在するのか、そして適切な解決策は何かを探ります。 お客様行動の理由は? 顧客の行動分析において、この方法が非常に役立ちそうだと感じました。普段からお客様の行動についてはある程度の傾向を把握しているものの、なぜそのような行動に至るのかという原因まで深堀りできていなかったため、今回の仮説設定と検証を通じて明らかにしたいと思います。また、これまでなかった【3C】や【4P】の視点を取り入れることで新たな気づきも得られると期待しています。 データ収集の方法は? まずは、自社が所有しているデータを収集するところから始める必要があります。現状のデータだけでは不足している可能性があるため、必要なデータをどのように取得するかを検討し、取得にかかる費用と解決したい問題とのバランスも考慮したいと考えています。加えて、仮説を立てることでスタッフ全員が同じ視点に立ち、各自の気づきを共有できる環境を作りたいと思います。

「分析 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right