クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

戦略思考入門

歴史から学ぶ!戦略の成功と失敗分析

戦略の本質は何? 戦略という概念については、シーンによって様々な内容で語られていますが、その本質は変わらないことが重要です。この点をしっかりと意識し、自分なりに答えられるように努めていくことが大切です。 競争優位はどう実現? ビジネスの戦略として、企業あるいは事業の目的を達成するために、持続的な競争優位を確立するための構造化されたアクション・プランを心がけています。この重要な考え方を忘れないように定期的に確認し、常に意識しておくことが必要です。 提案力はどう磨く? 提案力を向上させるためには、戦略と戦術をしっかり区別し、相手が納得できるプランを提案できるように努力します。他社を参考にする際にも、戦略と戦術を可視化し分析することが重要です。企業の戦略の結果を歴史から学び、その知見を自身のビジネスに活かすことを心がけます。 成功と失敗から学ぶ? また、成功した日本企業やアメリカの企業の戦略と戦術を見直します。成功例に目を向けるだけでなく、失敗した戦略例も確認し、他者の失敗から学ぶことも重要です。その失敗例を自分のこととして捉え、どう改善できたかについて仮説を立てる訓練を進めていきます。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

戦略思考入門

差別化を極める学びの軌跡

誰に価値を届ける? 差別化について学ぶ中で、様々な視点や切り口から「良い差別化」を実現する必要性を実感しました。まず、価値を提供すべき顧客を明確に規定し、深く理解することが、効果的な差別化の第一歩であると再認識しました。 模倣防止はどう実現? また、持続可能な仕組みを構築し、競合に模倣されにくい戦略を打ち出すために、VRIO分析のようなフレームワークを用いて立ち止まって考えることの重要性を感じました。特に、VRIO分析では、企業文化や組織といったソフトな要素が有効な資源となり得る点が印象的でした。 企業文化をどう表現? 一方で、共通認識としてユニークな企業文化を保有しているという認識はあるものの、それがどのように自社の価値創造に寄与しているかを十分に言語化できていないと感じました。今後は、VRIO分析を活用して、競合と自社それぞれの強みや特徴をより深く理解し、注力すべきポイントを明確にすることで、戦略の方向性を提案していきたいと思います。 実例はどう活かす? さらに、VRIO分析の活用方法についてまだ理解が不十分な部分があるため、具体的な事例を参考にしながら知識を深めていきたいと考えています。

クリティカルシンキング入門

MECEで魅せるデータ分析の力

MECEをどう意識する? MECEを意識することの重要性を学びました。まず、全体の定義をしっかり決めることが前提です。そして、「モレなく、ダブリなく」を心掛け、仮説を基にさまざまな切り口で分析を進めることが大切です。 データ分析の本質とは? 分析の有用性についても深く理解しました。ただ単に目の前のデータを眺めるのではなく、データを加工し、グラフなどで視覚化することで判断基準が明確になります。例えば、複数年度にわたる人員計画策定においては、現状の人員の将来的な年齢や職責の推移を様々な観点で視覚化し、どの世代の中途採用を強化するべきか分析していきたいと考えます。この分析を通じて、異なる雇用形態を持つ人員の流れを分かりやすく可視化できればと思っています。 効率的なデータ可視化のコツ さらに、実際に手を動かし、データを分解したり、グラフ化することで可視化する努力が重要です。そして、自分以外の視点や意見を取り入れて俯瞰的に見つめることも忘れずにいたいです。全体の定義を決め、モレをなくすため四角を埋めることを意識しながら、自問自答を繰り返し、誰が見ても分かりやすいデータを提供できる資料作りを心掛けたいと思います。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

戦略思考入門

経営視座の獲得法:フレームワーク活用術

広い視野の大切さは? 広い視野で物事を考えることは、経営者としての視座を持つことと同義であり、その結果、課題や求められている事案が明確に見えるようになります。 分析は何が重要? 例えば、3C分析やSWOT分析、バリューチェーン分析といったさまざまな分析フレームワークを、用途に応じて適切に使い分けることで、戦略や戦術がより明確になります。 経験から何が学べる? 私自身、以前は営業部門に所属していた時に、特に転勤などの環境の変化がある際にSWOT分析を頻繁に利用していたことを思い出しました。自身の視座を持ちながら分析を行い、営業戦略を考案し、上司に提案していたのです。現在は間接部門に所属しており、3C分析を使用する機会が増えていますが、フレームワークを適宜思い出しながら活用していきたいと考えています。 課題整理はどう進む? 定期的にフレームワークを用いて分析を行うことで、現状の課題を常に明確にし続けることができます。課題が全くないという状態は存在し得ないため、常に考え続けることが大切です。また、他者と分析内容を共有し、見解のブレがないか確認することで、整合性を向上させることができると考えます。

データ・アナリティクス入門

ロジックで紐解く成長のヒント

問題をどう洗い出す? 今回の学習では、まず何が問題であるかを洗い出し、その問題箇所を明確にすることの重要性を学びました。問題の原因を詳しく分析し、対策を検討・実行するプロセスや、結果から各要因を考察する点、さらに理想と現状のギャップを埋めるための工夫が大切であると実感しました。 分析手法は何か? また、分析手法としてロジックツリーやMECE分析、さらに階層分析と変数分析の活用が有効であることを学びました。これらの手法を用いることで、データの整理がしやすくなり、効率的な分析が実現できると感じます。 実例で何を発見する? 具体例として、交通系ICカードの決済データを利用し、加盟店やキャンペーンごとの売上分析に応用できる可能性があると考えました。売上分析においては、年代、性別、居住地、曜日などの視点で検証し、来店回数や決済金額の傾向も踏まえて全体的な分析に役立てたいと思います。 量と質のバランスは? 最初の段階では、質よりも量を意識して経験値を積むことが重要と考えています。質も適度に保ちながら、実践を重ね、ロジックツリーやMECE分析を積極的に活用してデータ分析に取り組んでいきたいと思います。

戦略思考入門

集合知を活かした新戦略の発見

競合データをどう見る? マーケティング部門との会議で競合分析のデータを基にした今後の戦略方針が示されることがありますが、彼らがどんなデータを元に議論しているのか、理解できました。今後はフレームワークを意識して使うことを心がけたいと思っています。そして、多くの人が一緒に考えることで生まれる「集合知」が非常に有効であることも学びました。 フレームの真実は? これまで、フレームワークは営業部門専用のものとの先入観がありましたが、実際には面接の事例のように幅広く活用できることを知りました。新商品の投入には大きな時間と費用がかかる業界において、自社の強みを活かせる分野を強化し、他社がまだ参入していないニッチな分野にも積極的にチャレンジしていきたいと思います。 計画はどう伝わる? また、プロジェクト計画を策定する際には、自分たちがやりたいことだけをリストアップするのではなく、経営者の視点から見た利益や強みを活かす方法、さらには将来的な変化による影響も考慮していきたいと考えています。チーム会議の頻度が高い中で、「集合知」の重要性をメンバーに共有し、より活発なブレーンストーミングを促進していきたいと思います。

クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right