クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

クリティカルシンキング入門

データ分解の新たな視点で未来を開く

数字分解の効果は? 数字を分解することで、データの解像度が向上します。分解の方法によって、見やすくなる効果があります。また、分け方の工夫によって差が現れたり隠れたりするため、多様な分け方が必要です。より多くのデータと分け方が組み合わさることで、分析の精度と確度に信頼性が増します。仮に思ったような結果が得られなくても、その分析が不要だったと分かるだけでも価値があります。そして、新たな分析を試みる契機となります。 グラフ作成の落とし穴は? データを分析する際、時には望む結果が出るようにグラフを作成してしまうことがあります。しかし、今回の学びから、精度と確度を上げるためにはデータのさらなる分解が必要であると感じました。今後は、MECE分解の3原則を意識してデータ分析を進めていきたいと思います。 再検証は必要? まず、過去の不具合事例を再度分析し直してみようと思います。一度結論を出した事象を再検証することで、今回の学びがどれほど有効であったかを確かめ、同様の結論に至るかどうかを確認するのは興味深い取り組みです。データ分析は非常に重要で、誤った原因を見つけてしまうと、対策や改善がすべて無駄になる可能性があります。そのため、より多くの分解を心がけたいと思います。

クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

データ・アナリティクス入門

多様な視点から問題解決を探る喜び

問題解決の多様な切り口とは? 問題解決にはさまざまな切り口があることを学びました。あるお題に対して「これ一択」と思いがちですが、見方や角度を変えることで多くの切り口が存在することが分かりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して要因分析を行うことの重要性も理解しました。これまでの業務でも要因分析を行う際、多くの漏れや重複があると感じていたため、この手法は非常に有益だと思います。 学生の満足度はどう測る? 具体例として、大学に入学してきた学生の質と卒業時の満足度を比較する際にMECEの原則を使えるかもしれないと考えました。大学での4年間、学生は学業やクラブ活動などを通じて多くの経験をします。これらの経験を漏れなくパターン化することで、従来とは異なる分析結果が得られるのではないかと思います。 学生の実態把握の重要性 多くの学生にヒヤリングを行い、どのような学生生活を送っているのか現状を把握したいと考えています。大学職員として普段接するのは、多くが優秀な学生か、その逆の学生に偏っている現状があります。その中間層の普通の学生たちの実態を把握することが、重要であると感じています。

マーケティング入門

ナルホド!STP分析で未来を変える学び

商品開発の学びを深めるには? 商品開発のプロセスや既存商品のSTP分析についての学びが主なテーマでした。STPについては何をすべきか理解していましたが、具体的な内容については多く学ぶことができました。特に、ポジショニングマップ作成時の2軸の設定方法が具体的で、実践の中で役立つと感じました。 提案力を高めるための戦略は? 今後、分析提案を行う際には、STP分析を用いる機会が必ず訪れると思います。限られた知識のままだと提案が漠然としたものになってしまいますが、意思決定者が納得できるような具体的な提案を目指したいです。「市場が本当に存在するのか」と「競合との差別化」という2つの点は特に難易度が高いので、これらをクリアするためのロジックと情報を日々集めていきます。 成功と失敗から何を学ぶ? また、成功者や企業からの学びは重要です。大手企業の事例はよく知られていますが、資金力や市場での立ち位置が異なるため参考になりにくいこともあります。そこで、中小企業の成功事例も積極的に取り入れ、実務では得られにくい仮説と検証を歴史から学んでいきたいと考えています。成功事例だけに目を向けがちですが、失敗事例の方が要因を特定しやすいため、幅広い視野で分析していきます。

リーダーシップ・キャリアビジョン入門

キャリア面談で活かせる新たな視点

モチベーションの違いを理解するには? モチベーションの源泉やスイッチは人それぞれ異なり、自分の経験や思い込みを押し付けても、必ずしも他の人のモチベーションアップにつながるとは限りません。特に印象的だったのは、講義のビデオで「自分のことも完全には把握できていないのだから、他人の心もわからない。分からないことを前提に接するべきだ」という言葉です。 新しいキャリア面談の挑戦 ちょうど今、部内でキャリア面談を実施していますが、この考え方は非常に役立つと感じました。例えば、部下から「どのようにキャリアプランを描くべきかわからない」という相談を受けた際、つい自分の経験を例に出して「自分の場合はこうだったので、あなたもこうしてみるのはどうか」といった話をしてしまいます。しかしこれでは、相手の悩みや希望を無視していることになります。そこで、まずは本人の言葉で悩みや考えを確認し、分析した上でキャリア面談を進めたいと考えました。 フィードバックを生かす方法 この新しいアプローチを、現在進行中のキャリア面談で試してみたいと思います。さらに、3月に予定している目標振り返り面談でも同様の方法を取り入れ、その際には前回の結果との違いを分析していきたいと考えています。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

マーケティング入門

市場価値を引き上げるポジショニング戦略

ポジショニングの重要性を学ぶには? 学習の中で取り上げられていた事例を通して、ポジショニングの重要性を学びました。たとえ商品としての品質(味、機能性など)が同じでも、売り出すターゲットを変えるだけで市場価値が大幅に変わることが印象的でした。ポジショニングやターゲッティングを変えるには、まずその製品自体および競合商品がどのような特徴を持っているのかを分析する必要があります。ただし、主観的な意見にならないように、顧客がその製品をどう感じているのかを的確に捉える必要があると感じました。 自社製品をどう分析する? 自社製品においてもポジショニングやターゲッティングが理解できていない部分があるので、まずは自社製品で分析してみたいと思います。自社製品の理解が深まることで、サプライヤーにそのターゲットに合った包材の提案を促す可能性があるのではないかと感じました。 競合との差別化戦略は何がある? まずは自社製品と競合製品のポジショニングやターゲッティングについて考えてみたいと思います。他にも市場に大量に売られている商品(例:お茶、洗剤など)については、競合との違いを見つけ出すことが難しそうですが、それぞれの戦略を調べてみたいと考えています。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right