データ・アナリティクス入門

復活!フレームワークで変わる仮説力

3Cや4Pの知識はどう? 3Cや4Pの考え方については、以前どこかで聞いた記憶があったものの、すっかり忘れていたため、改めて学習することができた点が良かったと感じています。 仮説設定に課題は? もともと、ゼロから自分で仮説を立てることが苦手で、仮説を作る際の効率が悪く、精度も不足していました。しかし、フレームワークを活用することで、要点を整理しやすくなり、情報の捉え方が明確になったと実感しています。また、仮説を構築する際には、以前学んだMECEの考え方が非常に役立つことも再認識しました。 クロージングの秘訣は? 内定者へのクロージングの際には、他社との差別化や意向を高めるために仮説を立て、対策を組み立てる必要があります。現在持っている情報から、何を伝えれば意向が上がるのか、また、さらに追加でどんなヒアリングが必要かを仮説を通して見極めながら情報収集を行っています。 比較分析はどんな感じ? また、内定者向けのクロージングに際して、自社と競合他社を比較するための型、例えば比較表のようなツールがあると、仮説立案がよりスムーズになると感じています。転職時に比較される要素を3Cや4Pのような形で整理し、どの部分で自社が優位に立っているか、逆に他社が優位または情報不足となっているかが一目で分かれば、クロージングのための具体的な対策を立てやすくなるでしょう。

戦略思考入門

価値と競争優位性を磨く学びの旅

価値を問い続ける姿勢を持つには? VARIO分析において、価値提供を追求する姿勢は重要です。顧客が求める価値や希少性のある資源を常に問い続けることが大切です。また、模倣可能性を考慮し、外部環境が変化した際には模倣される可能性を意識する必要があります。ただし、経営資源の分析にとどまらず、それをどう活用するかという視点も持つべきです。 ポーターの戦略がもたらす実践的ヒントとは? ポーターのコストプライシング戦略、差別化戦略、集中戦略は、自社サービスを向上させるために非常に実践的なヒントをもたらしました。 VRIO分析を深める方法とは? 総評として、VRIO分析の重要性をしっかりと理解し、持続可能な競争優位性の要素を意識している点は高く評価されます。今後は、具体的な業界や企業の例を取り入れることで、さらに理解を深めることができるでしょう。 新たな発見をするために身近な企業を分析するには? さらに、VRIO分析を使って身近な企業を分析することで、新たな発見があるかもしれません。また、ポーターの3つの基本戦略を自社サービスに具体的に適用する方法を考えることが求められます。 学びを具体的事例にどう結びつける? 最後に、学んだことを具体的な事例に適用し、実践的な理解を深められるよう努めることが大切です。日々の取り組みを通じて、引き続き頑張りましょう。

マーケティング入門

ヒット商品の誕生は計画的に可能!

ヒット商品は計画的に? 今週の事例から、ヒット商品は計画的に生まれるものだと感じました。Z世代のターゲットユーザーと化粧品市場の売り場を詳細に分析した結果、商品のコンセプトが導き出され、ヒット商品の誕生が可能になるというロジックが見えました。 値上げ成功のための新視点とは? また、「どうすれば値上げができるか」についても、新しい視点を得ることができました。特にユニークな差別化や顧客体験の差別化が、値上げの達成に役立つという点は重要です。原料高騰の背景も考慮し、自社の強みを整理して独自の差別化を図り、顧客に特別な体験を提供することで、商品提案につなげる必要があります。 ブレストで強みを具体化するには? 研究所のメンバーと共に、自社の強みや市場への戦略についてブレストを行い、アイディアを具体化していきます。さらに、顧客にユニークな差別化や購入体験を感じてもらうためには、必要とされる新技術についても意見を出し合い、最終的には研究テーマとしてブラッシュアップしていく予定です。 価値を更新していけるか? 同じ体験を繰り返すことで価値が減衰すると学びましたので、自社製品についても常に価値を更新していけるかどうか、一度見直してみたいと思います。この事例に限らず、他社のヒット事例も3C分析などを通じてロジックを調べ、学びを得ていきたいと考えています。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

マーケティング入門

顧客視点で潜在ニーズを見つける旅

顧客の潜在ニーズは? 今回、マーケティングの事例を通じて、顧客の視点からニーズを考える重要性を再確認しました。動画講習でも「顧客ニーズの深掘り」について学びましたが、顧客がまだ気づいていない潜在ニーズを探る姿勢が不可欠だと感じました。また、競合に勝つためには、自社の強みを理解し、それを応用する力や発想の転換も求められます。潜在ニーズの発掘には近道がありませんので、日々目にする商品やサービスがどのようなニーズを捉えているのかを考察していきたいと思います。 顧客視点をどう捉える? これまで自社の提供する製品やサービスについては、成熟市場での競合対策ばかりを考えてきました。これからはゼロベースで視点を変え、競合対策から顧客ニーズへの対応に目を向ける必要があります。特にIT分野では、企業のデジタル化に伴い商品やサービスが提供されるケースが多く、既存のニーズだけでなく、顧客が気づいていない潜在ニーズにも焦点を当てたマーケティングを展開していくつもりです。 ヒアリングで何を探る? 顧客の真のニーズを発掘するために、実際の活動を開始します。BtoB市場において、数社の顧客を選定し、デジタル化についてのヒアリングを行います。その際には、深掘りの質問ができるよう、顧客のホームページや業界情報をもとに3C分析を行います。11月中に3社を目標にヒアリングを実施します。

戦略思考入門

実務に生かす学びの一歩

授業内容をどう実務化? 授業で学んだ内容を業務にどう活かすかを考える過程で、配車アプリと中古車販売事業のシナジーに関して、まだ自分の視野が狭く、知識が十分に定着していないと痛感しました。そのため、基礎から復習し直す必要があると感じています。 動画学習は何を教える? 動画学習では、規模の経済性において、生産量が月ごとに変動する場合、調整の仕方によっては不経済になる可能性があるという点が新たな学びとなりました。また、習熟効果に関しては、問い合わせに対応する際の時間差から、チーム内でのスキルのばらつきを感じることができ、これをどう改善していくかという対策の重要性を再認識しました。 具体策はどう進める? 具体的な取り組みとして、習熟効果を高めるために、まずは定例会議で事例の共有とポイントの説明を行うこと、また、よくある質問やその回答をまとめた資料を作成し、いつでも参照できる環境を整えることを計画しています。これにより、チーム全体の対応力を底上げできると考えています。 連携で成果はどう? さらに、範囲の経済性については、他部署と共同で展示会などを行う際に得られるメリットを整理し、具体的な提案ができるよう、事前に自社のバリューチェーンを再分析することを進めています。こうした取り組みを通じ、実務に直結する形で学びを業務に生かしていきたいと思います。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

戦略思考入門

差別化を目指すVRIO活用の挑戦

どこで差別化が足りる? 私は、日常業務において差別化を意識して取り組んできましたが、その中で場当たり的な意見に左右されがちであったことを今回の学習を通じて実感しました。VRIOフレームワークを活用し、情報を抜けもれなく整理することで、場当たり的でない継続的な施策を考えることができると理解しました。 事例と現実のギャップは? 明確な事例であれば、VRIOでの情報整理はスムーズに進むでしょう。しかし、ビジネスの種類や状況によっては必ずしもそう簡単にはいかないと感じます。例えば、「顧客にとっての価値」という観点では、BtoBよりBtoCの方が分かりやすくまとめられるかもしれません。また、「Yes」「No」の判断には、VRIO以外のフレームワークを組み合わせる必要があるかもしれません。実際のビジネスは複雑であるため、分析する際にはいくつかのフレームワークを組み合せることが求められる、とハードルの高さを感じています。 広報での活用法は? それでも、VRIOの活用は私の従事する広報業務において非常に有効だと考えています。できるだけ早く実行に移したいと考えつつも、現実的には一筋縄ではいかないと感じています。まずは、日々の企画業務に少しずつ取り入れ、周囲のメンバーからのフィードバックを受けつつ、多様な視点を吸収し、判断軸を精緻化していきたいと思っています。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

「分析 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right