データ・アナリティクス入門

数値が拓く学びの未来

数字の多様性を考える? 数字を見る際には、単純な平均値だけではなく、データのばらつきにも注目することが重要です。代表値には、加重平均や中央値、場合によっては調和平均なども含まれることを意識し、ひとつの数字だけに依存しない視点が求められます。また、データをビジュアル化することで、各データ間の関係性を直感的に把握できる点も大きな利点です。 データ分布の見直し? 大量のデータを扱う場合は、まず仮説を立てた上で分析を進めることが望まれます。これまで平均値を基に議論が行われることが多かったものの、データ全体の分布を視覚的に確認することで、ばらつきから新たな視点や示唆を得ることができます。たとえば、定量調査の結果について、単に平均的な傾向を論じるのではなく、その分布状況を把握し、どのような要因がばらつきを生み出しているのかを再検討することが大切です。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

数字を味方にする学びの第一歩

数字の意味は? 数字自体は難解なものではなく、まずは苦手意識を払拭することが第一歩だと感じています。分析という行為は、なぜそのような結果になったのか、どのポイントからその結論に至ったのかを明快に説明し、他者を説得するための有力な材料になるからです。 どのように慣れる? そのため、初めは身近な数字に触れ、慣れ親しむことが大切だと考えています。次第にビッグデータを扱いながら、実践的な分析スキルを磨き、根拠となる資料を用いた分析を行っていきたいと思います。誰が見ても理解しやすく、納得できる説明ができるように心がけることが目標です。 偏らず分析するには? また、捉える数字を正確に把握するためには、一面的な見方に偏らず、あらゆる角度から分析する姿勢が重要だと実感しています。これにより、より具体的で説得力のある分析が実現できると信じています。

データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

クリティカルシンキング入門

グラフで探る新たな気づき

グラフ選定はどう? データ分析においては、単に数字の羅列を眺めるだけでなく、さまざまな視点から検討し、グラフ化することの重要性を実感しました。グラフを作成する際は、どのグラフが適切か、軸区切りや要素の分け方をどうするかなど、一つの方法に固執せず、「本当にそれだけで良いのか?」という視点を持ちながら、複数のグラフを試作することで新たな傾向や示唆に気付くことができました。 伝え方はどう? また、研修で「わかりやすく伝える」ことを重視する観点から、スライドに掲載するデータの見せ方にも改善の余地があると感じました。同一のグラフであっても、絶対値と相対値のどちらが適切かを検討したり、視覚的に訴える矢印を加えるなどの工夫が効果的です。多少の手間や時間はかかるものの、それらの工夫が最終的に伝えたい内容を確実に伝えるための近道になると思います。

クリティカルシンキング入門

多角的視点で紐解く真実

検証方法はどうなってる? 本質的な原因を追求するためには、データや数字を多面的にチェックし、単なる仮説だけでなく異なる視点から検証することの重要性を学びました。また、検証結果を確認する際に、一度立ち止まって漏れや重複がないかどうかを確認する習慣を身につけることが大切だと実感しました。 事業分析の見直しは? 新規取引先の事業分析では、売上、コスト、資金繰りなどを漏れなくダブりなく把握するために、MECEの考え方を用いて各要素を分解し、どの部分が収益性に影響を与えているかを明確にしていきたいと考えています。また、特定の仮説一辺倒にならずに複数の観点から原因を検証することを心掛け、資料作成やプレゼンテーションの場面においても、具体的に物事を分解し、なぜ返済方法が期限一括となるのかなどの理由をしっかりと説明できるよう努めたいと思います。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

アカウンティング入門

数字三表で見つけた成長の鍵

三表の数字、どう見る? 数字による定量的な評価については何となく理解していたものの、三表それぞれに示される数字の違いを体系的に把握できたと感じました。同じデータを異なる角度から見るという発想とは異なり、実際には異なる情報を抽出するための表であることに新たな発見がありました。 四半期発表、どう捉える? 四半期ごとのEarnings Announcementを通じて、業績や資金調達の状況、そして増減といった点を的確に読み解くことに意欲を持ちました。そのため、学びだけでなく、これまで流し読みしてきたレポートをじっくりと読み解く重要性を再確認する機会となりました。 内部留保の意味は? また、「内部留保」という用語が、純資産と同義で捉えてよいのか、また自社株買いに伴う費用はどのように処理されるのかといった疑問が残りました。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。
AIコーチング導線バナー

「数字 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right