データ・アナリティクス入門

偏差値から広がる分布分析

データの視点は何? データは数字、グラフ、そして数式という3つの視点から捉えることができます。数字の場合、代表値と分布の両面から情報を集約しますが、件数の多いデータを比較する際は、必ず分布の違いも考慮する必要があります。一方、数式では回帰分析とモデル化の手法が用いられます。 標準偏差の可能性は? 学生時代には偏差値を通じて標準偏差を知りましたが、営業成績の分布について考察する際に、数字やグラフから確認していたものの、実際に標準偏差を活用する経験はありませんでした。そこで、今後は標準偏差を用いた分布分析に挑戦してみたいと思います。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

クリティカルシンキング入門

逆算で見つける本当の課題

データの本質は? 今回の学習では、データをただ見るだけではなく、構造的に捉え、課題を正しく抽出した上で相手に伝わる形へと整理するプロセスの重要性を学びました。数字を並べるだけでは本質的な課題は見えてこず、課題は細かく分解することでようやく明確になることを理解しました。 伝える結論は? また、効果的なプレゼンテーション資料は「伝えるべき結論」から逆算して作成するのがポイントであると再認識しました。今後は、この視点を常に意識し、相手にとって分かりやすい資料作りに努めることで、現場の意識や行動に変化をもたらしていきたいと思います。

データ・アナリティクス入門

普段の数字が広げる知の扉

代表値の理解は? 平均値や中央値など、日常的に目にする代表値は理解しやすく、復習にも非常に役立ちました。一方で、普段はあまり接する機会のない冪根といった内容を新たに学ぶことで、知識の幅を広げることができた点が大変有意義でした。 数字の裏側は? また、業務で扱う数字だけでなく、経営陣が提示する数値についても、その背景や算出方法を十分に把握する重要性を感じました。今後は、根拠をしっかりと意識しながらデータを活用することで、クライアントに対してより的確な判断や提案ができるよう努めたいと思います。

データ・アナリティクス入門

代表値だけじゃ見えない発見

分析の誤りに気づく? データを分析する際、手法に誤りがあると仮説さえも誤ってしまうことを実感しました。代表値だけに頼るのではなく、散らばりなど他の視点にも注目し、分析や加工の方法の知識を豊富に持っておくことの重要性を学びました。 新発見の秘訣は? 業務においては、従来の方法を踏襲することが多い中でも、新たな発見や提案を生むためにはアプローチを変えることが鍵だと感じています。数字の見方一つで、これまで気付かなかった視点や発見があることに気づかされました。

データ・アナリティクス入門

数字の裏を読む学びの秘訣

代表値の正しい選択法は? 代表値として単純平均に頼りがちですが、まずはデータ全体のばらつきや分布を十分に把握することが重要です。その上で、目的に合わせた適切な代表値を選び、比較する必要があります。 数字の羅列はなぜ不十分? また、単なる数字の羅列ではデータの特徴を正確に捉えることは難しいため、ヒストグラムなどを活用し可視化することが求められます。グラフは、プレゼン資料の飾りではなく、データを正確に理解するための必須のプロセスです。
AIコーチング導線バナー

「数字 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right