クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。

アカウンティング入門

数字で読み解く経営の秘密

売上と利益の意味は? P/Lの構成を復習しながら、大きな数字で示される3つの利益について学びました。具体的には、本業がどれだけ儲かっているかを示す売上総利益、持続的に利益を生み出す可能性を示す経常利益、そして最終的な利益状況を示す当期純利益について、それぞれの意味と重要性を理解できました。特に経常利益の考え方は新鮮に感じ、会社全体の健全性を捉える上で非常に有用だと実感しました。 利益比較の意義は? また、各利益を比較することで、会社内で何が起こっているのかを仮説として立て、その原因を探ることが可能になるとも学びました。こうすることで、将来的に「何をすればよいか」がより明確になり、行動に移しやすくなると感じました。 カフェ事例は何か? 先週の事例に引き続き、今回アキコのカフェの事例を考察することで、経営においてコンセプトをずらさずに継続することの大切さに改めて気づかされました。今後は、さらに多様な商売の在り方についても理解を深めていきたいと思います。 P/L比較の実践は? 具体的には、以下の3点に取り組んでみたいと考えています。 ① 数年間分のP/Lを比較し、会社の状態の経緯や変化を考察する。 ② 仕事に限らず、公開されているデータを利用してさらなる気づきを得る。 ③ 興味のある会社の公開情報を数年分印刷し、比較することで深く理解する。 意見交換の余地は? それぞれが考えたカフェの事例についても、ぜひ意見を聞いてみたいです。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

データで綴る学びの軌跡

プロセスはどう進む? 分析を進める上で、プロセス・視点・アプローチの3つの要素が大変重要であると感じました。プロセスでは、まず目的を明確にし、次に仮説を立て、データ収集を行い、最後に検証を実施します。 視点でどう捉える? 視点に関しては、結果への影響度(インパクト)、特徴の理解(ギャップ)、一貫した変化(トレンド)、データの分布(ばらつき)、および法則性(パターン)など、複数の切り口でデータを捉えることが大切だと思います。 数式で理解できる? また、グラフや数字、数式を使って分析すると、視覚的にも理解しやすくなります。具体的には、単純平均、加重平均、幾何平均、中央値、標準偏差といった数式を用います。特に標準偏差は数値が大きければばらつきが大きいことを示し、小さい場合はデータが密集していることを意味します。 販売データはどう見る? 販売データを扱う際には、まず代表値と分布から傾向を掴むことが重要だと痛感しました。大量のデータがある場合、グラフを活用してばらつきを確認することにより、より精度の高い分析が可能になると考えています。また、平均値と中央値を比較することで、全体の状況を把握しやすくなるとも感じました。 業務でどう活かす? 実際の業務では、単純平均、加重平均、幾何平均、中央値、標準偏差など、どの指標を使用するのが最適かは、経験と慣れに依存する部分があります。今後も多くのデータ分析に取り組むことで、自分自身のスキルとして確立していきたいと思います。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

アカウンティング入門

数字で切り拓く経営の未来

利益の種類は何? 利益には大きく分けて、営業利益、経常利益、当期純利益の3種類があり、売上総利益も押さえておくとよいという点は基本中の基本です。 P/Lの全体像は? P/L(損益計算書)を読むときは、大きな数字―売上高、営業利益、経常利益、当期純利益―を軸にして、全体の概況を掴むことがポイントです。また、分析は比較や対比を行うことで、傾向の変化や相違点を見つけ出す方法が有効です。 異なるP/Lの違いは? さらに、異なるP/Lを比較することで、その構造の違いを確認できます。例えば、業種によっては収益向上の度合いが大きく異なり、業界ごとの特徴が浮き彫りになることもあります。 事業計画の評価は? 事業計画においては、企業コンセプトに沿った施策が展開されているか、投入費用が適正かを総合的に判断する必要があります。効果を上げるためには、アウトプットを増やすか費用を削減するどちらかを選ぶかといった視点も大切です。同業他社のP/Lと比較・対比することで、傾向の相違点を見つけ、新たなアイデアや施策を模索する取り組みも求められます。 皆様の意見は? なお、今回の設問2「原価比率の高い理由」では、個人的な思い込みから適正とは言えない回答をしてしまいました。そこで、皆様はどのように回答されたのか、また、直接利益に結びつかない仕事の性質上、この講習内容をどのように自身の業務に定着させていこうと考えているのか、ぜひ意見交換できればと思います。

アカウンティング入門

数字の裏側で輝く経営戦略

利益の意味を探る? 利益という観点から考察する際に、5つの側面それぞれが持つ意味や違いについて理解を深めることができました。単に売上や費用といった数値を追うのではなく、顧客にどのような価値を提供しているかを分析する重要性を改めて実感しました。 数字で見える特徴? また、利益を軸としてその根底にある数字から事業の特徴を捉える方法は、非常に興味深いものでした。各数値の妥当性を検証するために、同業他社との比較を通じた客観的な視点が大切であると感じました。自社での状況と照らし合わせながら、数値の背後にある意味を具体的に想像することが、経営判断において重要なプロセスだと学びました。 環境要因で差が出る? さらに、顧客から実際にお金を支払ってもらえる基盤として、立地などの環境要因が果たす役割にも気付かされました。例えば、ある業態においては、単に基本的な品質や高級感を提供するだけでなく、特定の差別化要因を取り入れることで、付加価値を高めることが利益向上に繋がることが印象に残りました。 価格設定はどうすべき? また、売価設定の難しさについても考えさせられました。利益管理の観点から、どのような価格設定が適切なのか、その根拠となる数値をどのように仮定し、検証するのかが経営の一大課題であると感じました。さらに、業績連動型の制度を取り入れている企業において、どの指標を業績評価に用いるのか、そしてその理由を明確にすることで、組織全体の意識改革にもつながると考えています。

「数字 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right