データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

アカウンティング入門

決算書で読み解く経営の物語

決算書から何を分析? 今回の学習を通して、決算書から企業の資金調達方法、コスト構造、利益の拡大メカニズム、そして固定費の大きさなど、経営戦略や特徴が多角的に読み取れることを改めて実感しました。単なる数字の羅列ではなく、その背後にあるビジネスモデルや企業の価値観を想像しながら分析する力が非常に重要であると感じました。決算書は、企業経営の実態を「見える化」する基礎資料であり、企業理解の土台だと再認識しました。 企業情報をどう活かす? 今後は、新聞や業界紙などの情報源に積極的に接し、さまざまな企業の経営情報に触れる機会を増やしていきたいと考えています。さらに、興味を持った企業の決算書を自ら確認し、分析することで、競合他社の財務状況や市場全体の動向を客観的に把握し、企業の立ち位置や戦略策定に役立てることを目指します。 財務分析のコツは? また、企業の決算書を取り寄せ、財務数値や構造を比較・分析するプロセスから学びを深め、得られた結果をもとに上司や経営層に提案できるような準備を整えたいと思います。継続して分析に取り組むため、毎月新たに一社以上の企業資料を読み込み、実務に結びつける努力を重ねながら、経営視点を確実に養っていく所存です。

アカウンティング入門

営業利益vs売上総利益の深い学び

売上総利益と営業利益の違いは? 売上総利益と営業利益の違いについて理解が深まりました。これまで、自分の仕事でサービスごとの損益計算を行っていた際、それを営業利益と呼んでいました。しかし、実際には販管費などを差し引く前の数字であるため、それは売上総利益であることが分かりました。この経験を通じて、一般的に使われている言葉でも、会社によっては内訳が異なることもあり得るため、各数字にどの項目が含まれているかをしっかり確認する必要があると感じました。 自分の事業全体をどう比較する? 今後は、自分の事業全体における売上高、売上原価、そして販管費がどの程度かかっているのかを、昨年度と比較してみたいと思っています。これを実施することで、それぞれの用語に対する理解が深まり、自社の事業全体が儲かっているのか、どのような状態にあるのかを把握する助けになると思います。 サービスごとのPL比較で何を学ぶ? また、扱っている各サービスのPLを並べて比較し、サービスごとの違いも見ていきたいと思います。具体的には、売上原価が多くかかるサービスと、売上原価が低く抑えつつ売上高を高く維持できるサービスなど、それぞれの特性を理解しようと考えています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

アカウンティング入門

数字で見える経営の現実

無借金経営の何が魅力? 無借金経営のメリットとデメリットがイメージでき、事業を継続するために売上を伸ばす際は、負債と純資産のバランスを考慮した適切な投資が必要であると理解できました。また、業界やビジネス規模によってバランスシート(BS)の各項目のバランスが異なることがわかり、各社のBSを分析する前には、まず業界の特徴を把握する必要があると感じました。 BSと仕事の関連は? 現在の業務において直接活用する場面は少ないものの、自分の仕事が結果的にBSのどの部分(たとえば固定資産管理や在庫保有など)に関連しているかを意識してみたいと思います。さらに、所属する業界の特徴に基づいた分析を続け、他社との比較ができるようにスキルを高めたいと考えています。 業界特性はどんな? 業界によって固定資産と流動資産の割合や、負債と純資産の割合が大きく異なるため、まずは対象企業が属する業界の傾向を確認した上で、その企業のBSを見直し、特徴を捉えたいと考えています。また、BSの結果と損益計算書(PL)の結果との関連性、特に人件費などPLには反映されるがBSには現れにくい影響についても、より深く学んでいきたいと思いました。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

データ・アナリティクス入門

問題解決に役立つ分析ステップの探求

問題解決に必要なステップとは? 「What, Where, Why, How」のステップを意識することで、さまざまなことに安易に飛びつくことなく、順序立てて問題を解き明かせると感じました。問題の中で、利益を上げるために何をすべきかという設問に対しては、各項目の利益の占有率を金額で換算し、数字を比較することでインパクトの大きい箇所を見つけ出しました。まさに「分析は比較なり」と実感しました。 ギャップをどう示すか? 問題解決のプロセスとして、あるべき姿と現実を明確にし、そのギャップを数字で示します。収益構造を変数のロジックツリーに当てはめ、それぞれの変数ごとに金額換算して比較することで、インパクトの大きい部分を特定します。 効果的な分析の手順 具体的なステップとしては、まず目的を明確にすることから始めます。次にロジックツリーを作成し、変数分解と層別分解を行います。特に、ロジックツリーを2種類作る際は、その目的を明確にすることで手段が目的化しないように注意します。意味のある分析の切り口を意識することが重要だと考えています。それを達成するためにも、目的の明確化が大切であると感じました。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

「数字 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right