データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

アカウンティング入門

決算書で読み解く経営の物語

決算書から何を分析? 今回の学習を通して、決算書から企業の資金調達方法、コスト構造、利益の拡大メカニズム、そして固定費の大きさなど、経営戦略や特徴が多角的に読み取れることを改めて実感しました。単なる数字の羅列ではなく、その背後にあるビジネスモデルや企業の価値観を想像しながら分析する力が非常に重要であると感じました。決算書は、企業経営の実態を「見える化」する基礎資料であり、企業理解の土台だと再認識しました。 企業情報をどう活かす? 今後は、新聞や業界紙などの情報源に積極的に接し、さまざまな企業の経営情報に触れる機会を増やしていきたいと考えています。さらに、興味を持った企業の決算書を自ら確認し、分析することで、競合他社の財務状況や市場全体の動向を客観的に把握し、企業の立ち位置や戦略策定に役立てることを目指します。 財務分析のコツは? また、企業の決算書を取り寄せ、財務数値や構造を比較・分析するプロセスから学びを深め、得られた結果をもとに上司や経営層に提案できるような準備を整えたいと思います。継続して分析に取り組むため、毎月新たに一社以上の企業資料を読み込み、実務に結びつける努力を重ねながら、経営視点を確実に養っていく所存です。

アカウンティング入門

営業利益vs売上総利益の深い学び

売上総利益と営業利益の違いは? 売上総利益と営業利益の違いについて理解が深まりました。これまで、自分の仕事でサービスごとの損益計算を行っていた際、それを営業利益と呼んでいました。しかし、実際には販管費などを差し引く前の数字であるため、それは売上総利益であることが分かりました。この経験を通じて、一般的に使われている言葉でも、会社によっては内訳が異なることもあり得るため、各数字にどの項目が含まれているかをしっかり確認する必要があると感じました。 自分の事業全体をどう比較する? 今後は、自分の事業全体における売上高、売上原価、そして販管費がどの程度かかっているのかを、昨年度と比較してみたいと思っています。これを実施することで、それぞれの用語に対する理解が深まり、自社の事業全体が儲かっているのか、どのような状態にあるのかを把握する助けになると思います。 サービスごとのPL比較で何を学ぶ? また、扱っている各サービスのPLを並べて比較し、サービスごとの違いも見ていきたいと思います。具体的には、売上原価が多くかかるサービスと、売上原価が低く抑えつつ売上高を高く維持できるサービスなど、それぞれの特性を理解しようと考えています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「数字 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right