データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

クリティカルシンキング入門

問いの一歩で変わる未来

本質の問いは何? まずは、「問い」を立てることから始める重要性を再確認しました。しかし、人の思考には偏りやバイアスがかかりやすいと学んだため、本当に解くべき問いを見極めることが非常に難しいと感じています。そのため、ヒト、モノ、カネといった基本的な要素を理解し、本質的な問いかどうかを判断する視点が大切だと腑に落ちました。また、今の状態がやっとスタートラインに立ったような実感もありました。 問いをどう記録? 問いを立てるだけでなく、それを記録し、共有することも重要であると認識しています。しかし、まずは本当に今考えるべき問いを見極めることが不可欠です。そのため、問いを立てたアウトプットを作成し、他者からのフィードバックを受ける機会を設け、判断力をさらに高めていきたいと考えています。 問いで改善はどう? また、業務改善や課題解決に向けた目標やゴールの設定にも、問いの立案は大いに役立っています。これにより、議論や施策の具体化、さらには効果検証まで、あらゆる段階で有効な成果を生むことが実感できています。 問いの練習で何が変? 明日からは、課題解決や改善の場で「問い」を立てる練習を重ねたいと思います。具体的には、問いをアウトプットして他者と議論し、その問いに向けた情報の分解、施策の立案および実行、効果検証という一連のプロセスを意識していきます。こうした取り組みを通じて、解くべき問いを見極める能力をさらに向上させられるよう努力します。 単科受講で成長? なお、学びを継続するため、4月からの単科受講も前向きに検討しています。

デザイン思考入門

試作と対話で進む新たな学び

試作の魅力は何? 今回学んだ「試作(プロトタイピング)」の考え方は、業務でのダッシュボード開発に大いに活かせると感じました。いきなり完成形を目指すのではなく、まずはシンプルな形で作成し、ユーザーと対話しながら改善を重ねるアプローチが、重要な指標や分かりやすい表示方法の発見につながると実感しました。 対話で何が進む? このプロセスでは、「試して対話すること」が完成度を高めるための大切なステップであると再認識しました。実際に形にして見せることで、議論が前に進み、具体的な意見交換が生まれやすくなるため、未完成であっても価値があると感じています。 理想と現実は? また、プロトタイプを通じて、自分が考える正解とユーザーが求めるものとは必ずしも一致しないという現実にも気付かされました。共通認識を築きながら進めることで、最終成果物の質が向上する一方で、形を見せることによって意見が多岐にわたる点についても、改めて「目的に立ち返る」視点の重要性を感じました。 試作のポイントは? これらの学びを通して、完成品にこだわりすぎず、まずは試作を手がけ対話を促すことがダッシュボード開発において有効であると実感しました。すべての意見をそのまま取り入れるのではなく、目的を明確にしながら判断する姿勢も必要です。 学びをどう活かす? 今日の学びを一言でまとめると、「試作はゴールではなく、対話を深めるための手段」であると言えます。今後の業務においても、作って見せ、振り返り、磨いていくサイクルを大切にしていきたいと思います。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

クリティカルシンキング入門

クリティカル思考が未来を拓く

クリティカルってどうする? 1Wの講義で、特に印象に残ったのは、クリティカルシンキングに関する次の3点です。まず、クリティカルシンキングは、制約や偏りを起こさない正しい頭の使い方の土台となるという点。次に、客観的思考を持つ「もう一人の自分」を育てる役割を果たすこと。最後に、ビジネスの現場においてリスク回避につながる点です。これらの認識や改善が、今後のプレゼンテーションや作成物の価値向上につながると考えています。そして、受け手が分かりやすく判断できるよう、3視・MECE・ロジックツリーを駆使する力を身につけたいと思います。 業界の転換期はどうなる? また、自身の所属する業界は100年に一度の転換期を迎えており、ビジネスの方向性が不透明な状況です。不透明な時代を乗り切るために、継続すべき事柄、やめるべき事柄、新たに取り組むべき事柄を整理し、積極的に提案していく必要があると感じています。提案の際には、自分の考えを相手に的確に伝えられるよう、プレゼンテーション資料やメールといった作成物のレベルアップを図り、相手に刺さるメッセージを届けることを目指します。 提案はどう進める? さらに、提案の作成では、3視・MECE・ロジックツリーの視点を採り入れ、論理的で漏れや重複のない内容に仕上げます。説明にあたっては、クリティカルシンキングによる客観的思考を意識し、使用する単語やストーリーに注意しながら相手への説明責任を果たしていく所存です。本日4/25より、これらの点を意識し、業務の中で実践していくことで自己の定着化を進めていきます。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

デザイン思考入門

自分も挑戦!受講生のリアル学び

デザインの真意は? デザインとは、単にモノを形作ることではなく、その背後にある価値を創り出すことだと捉えています。モノのデザインには、細部にこだわる「スモールd」と、高い視点から価値を生み出す「ビッグD」が存在します。同様に、デザイン思考もスモールdとビッグDの2側面を有し、前者は革新的なプロダクトやサービスを生み出すためのデザイナー的な思考法、後者は社会とどう繋がるかを考える視座を意味しています。 本業と副業はどう違う? 本業においては、チームメンバーの声に真摯に耳を傾け、業務に対する根本的なニーズを捉えた上で共感し、それを業務改善やチームビルディングに反映させることに努めています。一方、副業のコンサルティング業務では、デザイン思考の考え方をセミナーコンテンツとして展開できるよう取り組み、本業での実践を俯瞰的に捉え、モデル化していきたいと考えています。 組織改革の鍵は何か? また、ブランドやイノベーションの創出に加え、リーダーシップやチームビルディングへもデザイン思考を応用できないかを模索中です。多角的な視点で組織の発展に寄与する方法を探しながら、より実践的なアプローチを追求していきたいと考えています。 業務改善の糸口は? 現状、人手不足や業務の忙しさといった不満が上がる中、まずはそれらの声を文字として整理し、何を補うことで状況が改善されるのかを探っていく予定です。整理された不満の中から共感できるポイントを見出し、そのプロセス自体も記録しながら、改善への具体的な手がかりを探す方針です。

リーダーシップ・キャリアビジョン入門

21人のチームを率いるリーダーの挑戦

リーダーシップの多様性を考える? マネジリアルグリッドでは、業務への関心と人間への関心に基づいてリーダーシップを5つのパターンに分類しています。私自身、それぞれのパターンを理解することで、自分や相手の強みや改善の機会を見極められると感じました。 リーダー行動はどう選ぶ? 一方、パス・ゴール理論では、リーダーの行動を4つのタイプに分類しています。私は特に支援型と参加型のリーダー行動が得意です。講義では「どんな仕事か」「どんな相手か」を意識することが重要だと強調されました。そのため、特定の型に固執する必要はないと感じましたが、自分の不得意なリーダー行動を改善するために、メンバーの能力や意欲に応じた行動を自ら選び取り、成果を出せるリーダーを目指したいと考えました。 チーム支援をどう実現? 私が現在率いるチームには21名のメンバーがいます。それぞれの目標達成を支援できるよう、メンバーに合わせたリーダー行動を選択し、チーム全体の目標達成を目指したいと思います。 目標設定をどう捉える? 11月には、今期の目標設定を行う時間を設け、お互いの目標達成を約束し、具体的な行動計画を立てることをリードしたいと考えています。そのために、次の準備を進める必要があります。具体的なKPIの設定や、自分自身がどのような仕事を担当するかを明確にすること。そして、チームメンバーの能力や意欲を把握し、目標設定までにリーダー行動を決定することです。これには、昨年度の成果や最近のコミュニケーションを基に確認することが重要です。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

「業務 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right