マーケティング入門

マーケティング戦略再構築の道筋

顧客要望の収集が鍵? 商品販売を行う会社の強みを考える際、顧客の要望を収集し分析することから始めることが重要です。会社と顧客の両者が抱える問題点を深く考察し、その結果、新たなビジネスの可能性を見出すことができます。 方針は再構築すべき? 私たちの新規事業は開始から1年が経過しましたが、まだ明確な製品販売方針が決まっていません。また、顧客ターゲットも曖昧なままです。この状況ではマーケティング戦略を確立できませんので、方針を再構築する必要があると強く感じています。 新旧事業の優先順位は? 今後の方向性として、新規事業販売の促進か、既存企業サポートの強化のどちらを優先するかを計画し、意見を交換しながら明確な道筋を立てていきたいと考えています。両者の必要性を認識しつつ、優先順位をつけて取組むべきです。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

マーケティング入門

名前ひとつで未来が変わる

名称変更が与える影響は? 今回の学習では、新商品の普及に寄与する5つの要素―比較優位、適合性、わかりやすさ、試用可能性、可視性―に焦点を当てました。特に、商品の名称変更が消費者の連想や期待にどのような影響を及ぼすかを事例を通して学びました。同じ商品でも、ネーミング次第で消費者が抱くイメージが変わり、結果として売上に差が生じる可能性がある点が示され、顧客ニーズやターゲットセグメントの分析の重要性を実感しました。 顧客ニーズの真実は? 自社製品においても、現在顧客ニーズの調査を開始した段階です。自分たちが想定している商品仕様が実際の需要とどの程度合致しているのか、また顧客が期待する機能と価格のバランスについて検証中です。今後は、顧客訪問やヒアリングを通じて、より具体的な情報を収集し、製品開発に反映させていく予定です。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

マーケティング入門

ユーザーの声から学ぶ現場の知恵

なぜユーザー目線に注目? 改めて、ユーザー目線が単なる机上理論ではなく、実際のペインや潜在需要、さらにはカスタマージャーニーの重要性が非常に刺激的であると感じました。自社製品が短期的な成果を追求するあまり、ユーザーの声を見逃してしまうことが組織全体にとって大きなリスクになると考えています。 なぜカスタマー言葉が難しい? また、これまで先輩方からはカスタマー目線での要望に耳を傾け、徹底して聞き役に徹すべきだと指導を受けた記憶があります。しかし、私自身、カスタマー言語を理解するために事前情報を収集し、実際のコミュニケーションに臨むと、非常に高いハードルが存在する要望が提示されることに気付かされました。この経験は、ある種の仲間意識を感じさせるものであり、今後のコミュニケーションの発展に大いに期待しています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

データ・アナリティクス入門

仮説検証で広がる実務の可能性

仮説思考の基盤は? 仮説思考の重要性を実感しました。まずは、問題解決のために仮説を立て、その仮説が正しいかどうかを検証するためのデータを収集するという基本プロセスが、結論を導くための確かな基盤になると感じました。 複数仮説の選び方は? また、複数の仮説を最初に立て、その中から有力なものを選別していく方法は、柔軟かつ多面的なアプローチを可能にします。さらに、仮説を立てる際には、3Cや4Pなどのフレームワークを活用することによって、問題をあらゆる角度から捉え、具体的なデータ収集の方法(既存のデータの活用や新たなデータの収集)の選択にもつながることを学びました。 実務活用のポイントは? この学びを活かすことで、実務においても課題の原因究明や効果的な打ち手の検討に役立てることができると感じました。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

マーケティング入門

対面で引き出すお客様の真心

どうして深掘りする? 顧客のニーズを正確に捉えるためには、顧客が不満に思う点を深く掘り下げる必要があると学びました。実際、顧客自身が気づいていない点も、アイスブレイクを交えながら信頼関係を築くことで、従来の不満以外の情報を引き出せる可能性がある点が印象に残りました。 訪問の意義は何? 自社商品の改善点を模索する中で、今後は顧客先を訪問した際に、信頼関係がすでにある方と個別にお時間をいただき、ざっくばらんに不満やご意見をお聞きしたいと考えています。また、他の社員からも、顧客先で得た不満の情報を収集して、全体の改善に役立てられればと思います。 なぜ対面が必要? 最近ではリモート会議で済ませるケースが増えていますが、やはり対面での会話でしか本音を引き出せないのかという疑問が残ります。

データ・アナリティクス入門

多角分析で見つける新たな発見

復習は十分でしたか? 総合演習を進める中で、実際にデータに基づいた分析を具体的に行うことで、これまで学んできた内容をしっかりと復習できたと感じています。また、自分一人では考え付かない多様な回答に触れることで、大変勉強になりました。 多角的検証はどう? データを単に見るだけではなく、様々な切り口で検証することにより、隠れた課題に気付くことができた点も大きな収穫です。その経験から、問題を多角的に把握する重要性を実感しました。 結論頼りは危険? 一方で、低採算などの課題に直面する際、どうしても思い込みや結論ありきになりがちであると感じました。今後は、課題解決のプロセスを重視し、客観的に全体を俯瞰した上でデータ収集と分析を行い、誰もが判断しやすい行動を心がけていきたいと考えています。
AIコーチング導線バナー

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right