データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

戦略思考入門

差別化戦略で顧客価値を見極める

差別化のポイントをどう理解する? 今週は差別化のポイントについて学びました。自社がどの戦略を取るべきかを決定するために、次の4つの視点を重視すべきだと理解しました。1つ目はターゲット顧客の設定、2つ目は顧客ニーズの把握、3つ目は競合他社の施策の理解、そして4つ目が実現可能性と継続性です。 経験から学んだこととは? 実践演習では、製品やサービス、チャネルなどの項目で情報を分けることで、自社や競合、顧客層、顧客ニーズを整理しやすくなりました。しかし、私自身の切り口が細かすぎたため、切り口の工夫が必要であると感じました。 顧客視点を業務にどう活用するか? 私の業務では競合との差別化を考える機会は少ないのですが、「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」といった視点は、自らの業務に活用できると確信しています。この考え方を取り入れることで、常に顧客やトレンドを見直しつつ、他者にも説得力のある施策を決定できると考えています。 改善策をどう進める? また、中期プランおよびコールセンターの満足度改善計画を立てており、出てきた改善策に対して、「顧客を誰とするのか」「顧客にとって価値があるのか」「実現可能性や持続可能性について検討したか」を自分自身やメンバーに問いかけ、言語化および視覚化を進めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

自分で目標を立てる楽しさを発見

自発性を引き出す目標設定は? 目標設定のプロセスにおいては、相手から自発的に意見を引き出し、自ら目標を設定する流れを構築することが重要です。これにより、目標設定のプロセスへこれまで以上に積極的に参加してもらうことを目指します。 効率的な目標設定の流れとは? 現状の目標設定の流れは次の通りです。まず、上席で骨格を作成し、全体で確認会を実施します。その後、各担当が目標の詳細を作成し、個別面談を行います。このプロセスでは、特に確認会と個別面談において、相手からの意見をしっかり引き出し、彼らの興味を引いてプロセスに参加させることが求められます。さらに、自身に余裕を持ち、自分のペースを管理することも重要です。 プロジェクト見直しから始めるべきか? この動きは半期に一度のものであるため、まずは進行中のプロジェクトの見直しから始めます。そして、指示型のプロジェクトについては、今後の目標設定を再構築するために、具体的な対応策として以下のステップを設定します。 具体的な対応策とは? まず、全体像を再度整理して担当スタッフに共有します。次に、担当スタッフとして彼らの考えや課題を引き出し、共に今後の道筋を立てることが目標です。そして、2月5日の会合に余裕を持って臨めるよう、2月4日までに月次業務やその他の業務に目処をつけておくことが必要です。

戦略思考入門

目的を追求するための問い直しの力

手段にとらわれないゴール設定は? ゴール設定の重要性は理解しているものの、気がつけば手段の巧拙に目を奪われてしまうことがあると再認識しました。最短の道が迂回路である場合も多く、遠回りに見える近道を見つけるのは難しいですが、手段の技術を磨きたいと感じています。 生成AIにおける限界とは? また、雑談の中で生成AIからうまく回答を引き出せないという話を聞くことがあり、質問力や言語化能力の難しさを改めて感じました。万能に見える生成AIにも限界があると理解し、仕事で生成AIを提案する際には、この点にもう少し配慮すべきだと感じています。 目的の抽象化はどう深掘りする? 目的には抽象化の階層があります。例えば、業務効率を上げるのは利益率を上げることかもしれません。業務効率が難しい場合、顧客回転率を上げるといった他の手段が費用対効果が高いかもしれないと考えています。このような目的の深掘りは意外と軽視されがちで、改めて意識することが大切だと思いました。 「So what」の問い直しの重要性? 目的を確認する際には、「So what」を1、2回ではなく、3〜5回問い直す習慣をつけるよう心がけたいです。これにより、より本質的な目的に到達でき、他の手段を広範な選択肢の中から見つけ出せるのではないかと考えています。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

戦略思考入門

仕掛けで楽しく進める目標達成法

仕掛けってどう作る? 計画の実行に際して、日々の行動を習慣化することができる人は「仕掛け」を上手に作っていると感じました。これまでの自分は目標を立てることに専念しすぎて、実際にどう実行していくかについてのプランが十分ではなかったと痛感しています。他の人がどのように仕掛けを作り、それを取り入れているのかを知りたいと思いました。 目標設定で仕掛けは? 今後は、期初の目標設定時に仕掛けも併せて考えたいと考えています。ゲーミフィケーションとまでは言わなくても、日々の業務に楽しく取り入れることができれば、それは自分だけでなくメンバー全体が一緒に行動でき、各自のスキル向上のみならず、組織全体の底上げにもつながると考えています。 動機付けはどうする? そこで、目標設定のシートに「仕掛け」という項目を追加することを考えています。一般的に目標設定では「何を成し遂げたいのか」に終始しがちですが、チェックリストでの現実的な観点から、実行の障壁を検討することが抜けがちです。自分をどう動機付けるか、目標に向かって自然に日々の業務を進める状況を作り出すことが、恐らく目標設定で最も楽しいことのはずです(これは自分自身をよく理解していないと難しいかもしれません)。自分自身もメンバーに対しても、一緒に楽しく目標達成に向けて頑張れる関係を築いていきたいと考えています。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

戦略思考入門

言葉にするゴールの力

ゴールはどう決める? ゴール設定が重要だと改めて感じています。部下には「何がしたいんだ」「どうしたいんだ」と問いかけ、明確な目標の言語化を促す機会が多々あります。しかし、私自身も経験則でやっているため、実はちゃんとゴールを設定できていなかったことに気づきました。 部下の根回しはどう? また、業務がスムーズに進むために取り組んでほしい「根回し」ができない部下がいるのは、単にコミュニケーション能力の不足だと思っていました。しかし、実際は戦略的な思考力が欠けていることが原因であると理解し、納得しました。 戦略立案はどうする? さらに、私の上司は自組織の戦略立案を担っており、意見を求められることが多いです。私自身はまだそのポジションに就いて間もなく、現時点では一から戦略を策定する機会はありませんが、遠い将来、特定領域の戦略立案を任される可能性が高いと感じています。そのため、上司に指摘される前に自分なりの戦略を構想し、上司と意見をすり合わせながら準備を進めようと考えています。 具体策はどう進める? 具体的には、上司が設定したゴールとその達成までの道筋を明確に言語化し、他の方法や計画と比較検討する予定です。2週間に一度の1on1のミーティングの際に、今回の講座で学んだ内容も踏まえた私の考えを説明し、フィードバックをいただこうと思います。

クリティカルシンキング入門

数字の楽しさと効果的な使い方発見!

数値をどう分解する? 数値を分解することの楽しさが増し、明確に理解できるようになりました。また、分解したデータを表にしてわかりやすく伝える重要性も実感しました。分解する際には、MECE(モレなく・ダブりなく)や層別、変数別、プロセス別などのフレームを意識することが大切です。 新たな知識をどう活用する? この知識は、来期のプラン作成や今年の成果分析、自店舗の顧客傾向を把握する際に役立ちます。例えば、店舗のPLを分析する際や、与えられた時間内に業務が終わらない時にプロセスを分解することで、問題点を特定することができます。また、チームメンバーに特定のカテゴリーで売上を伸ばすことをコミットする際も、各店舗の傾向を商品で分解して機会点を見える化することで、目標設定やプランニングがスムーズに行えます。 苦手意識をどう克服する? これまで数字の分解に対して苦手意識があり、必要最低限にとどめていた部分もありましたが、今回の学びを通じて積極的に数値を分解する経験を積みたいと思います。直近では来期のチームプランを作成するため、今期の成果を分解して強みや機会点を明確にし、チームメンバーが視覚的にわかりやすい資料を作成する予定です。また、顧客調査の結果をMECEを意識して分解することで、各店の機会点を把握し、チームメンバーに共有することも計画しています。

データ・アナリティクス入門

仮説で紡ぐブランドの未来

変化にどう対応する? ビジネス環境は刻々と変化しており、すべての情報をあらかじめ把握することは難しくなっています。そのため、仮説を立てながら方向性を見出し、PDCAサイクルのスピード感を向上させることが不可欠だと感じています。仮説があることで、リソースを効果的に活用し、時間や費用の無駄遣いを防ぐことができると実感しています。 ブランドの価値はどう見る? 特に新規事業で新しいブランドを立ち上げる際は、単に機能面の優位性だけではなく、ブランドのストーリーや価値が重要になると考えています。そこで、ターゲット層に確実に響く戦略を構築するため、仮説検証を繰り返し行っています。 仮説検証は効果的? まずは以下の仮説を設定しました。 ① ターゲット層は単に高価格だけでなく、ブランドのストーリーに価値を見出す。 ② 既存の高級製品と比べ、性能面での優位性を示すことで購買意欲が高まる。 これらの仮説を検証するため、ユーザーへのインタビュー、限定販売での反応テスト、SNSやマーケットでのフィードバック収集を実施しました。もし仮説が誤っていた場合には、その原因を徹底的に分析し、新たな仮説を立て直しています。 このようなプロセスを通じて、ターゲットにしっかりと刺さる戦略を練り上げ、新ブランドの価値を最大限に引き出すことを目指しています。

「設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right