アカウンティング入門

守る価値 育む成長の秘訣

本当に価値を守れてる? 企業が利益を上げるためには、売上を増加させるとともに費用を削減する必要があります。しかし、各施策を検討する際には、自社が大切にしている価値を十分に考慮することが求められます。無闇に費用を削減すれば、大切にしていた価値が失われ、その価値に共感していたお客様が離れてしまい、結果として売上が下がり利益が出なくなる可能性があります。 コアバリュー再認識は? そのため、幹部候補メンバーとの事業計画策定時には、まず自社のコアバリューを再認識してもらい、その上で売上増加と費用削減の施策を検討してもらいます。出てきた各アイデアについては、自社のコアバリューを損なわないかどうかを丁寧に確認していくことが必要です。 数値が示す真実は? また、幹部候補メンバーには、自社のお客様と売上のデータを分析し、お客様が何に価値を感じているのかを考えてもらいます。その「価値」が損なわれない範囲で実施できる費用削減策と、その「価値」をさらに高め、売上増加につながる施策を立案することが求められます。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

戦略思考入門

競合分析から見える戦略のヒント

何から着手すべき? 戦略的に考える際、まず何から手をつければよいのかが不明確でしたが、3C分析やSWOT分析などのフレームワークを活用することで、検討すべき事項が明らかになりました。また、全体感を常に意識することの重要性も再認識しました。 競合市場の課題は? 現在の課題としては、競合が10社以上存在する市場の中で自社の優位性をどのように構築し、持続的な成長を実現するかが挙げられます。まずは他社の分析から始め、自社が持つ競合優位性を見極めることが必要です。 実施策はどんなもの? 具体的な取り組みとしては、以下のプロセスが考えられます。 1. 競合分析の実施  ・市場における競合のポジションや戦略を調査する  ・競合の強みと弱みを分析する 2. 自社の競合優位性の見極め  ・自社の強みを整理する  ・市場ニーズとのギャップを特定する 3. 差別化戦略の策定 4. 社内での情報共有と連携の強化 これらのプロセスを通じて、より明確な戦略の構築を目指します。

データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

戦略思考入門

効率化で時間と売上を生み出す秘訣

経営戦略で何が変わったのか? 現在の会社では、経営戦略の活用により無駄な作業が著しく減ったと感じます。以前は同じ内容を複数の書類に記載するなどの二度手間が多かったですが、今は減らせる作業をどんどん減らしていっています。それにより、顧客への準備時間が確保でき、売上にもつながっています。 仕組み化のメリットとは? 仕組化することも有効だと考えます。例えば、講演会の開催においては、個人によって準備や開催の方法、フォローの取組が様々ですが、最も効率的な方法をチームで検討して仕組化することで、抜け漏れの確認が容易になります。そして、全員が最も効率的な方法を実行できるようになるメリットがあります。 どう仕組み化を進める? この仕組み化を実際に試してみようと思います。まずは、チームの個々の講演会のやり方を聴取し、最短で効果的な方法を抽出します。その後、数人で実施し、検証しながらブラッシュアップしていくことで、最終的に仕組化したいと考えています。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

クリティカルシンキング入門

イシュー設定が成功への鍵と実感した学び

イシューを具体化するには? イシューの設定が課題解決において重要であることが身をもって実感しました。特に、問いを明確かつ具体的に設定し、全体の前提や認識をそろえることが不可欠です。また、イシューを設定した後も、常にその意識を持ち続けることが大切です。議論や思考が途中でそれないようにするためです。 営業マネジメントにおける効果的なサイクル 営業マネジメントにおいては、数値達成や業績向上のために、適切なイシュー設定と、その解決策を検討・実施するサイクルが求められます。今回学んだ内容は、自チームのイシュー設定から数値改善まで、実践で試してみる価値があると感じました。 データ活用の力をどう身につけるか? 課題解決に際して何をイシューとするのか、これまでの数値データを活用して見極める力を習得したいと考えています。そのため、改めてデータを整理し、ピラミッド・ストラクチャーを使って、イシューの書き出しと整理を進めていきます。

データ・アナリティクス入門

ギャップを超える成長日記

無意識の決めつけは? 現在担当している業務では、欲しい回答を得るために無意識に決めつけをして分析や結果報告をしている可能性があると感じました。今後は、「モレなくダブリなく」の原則に基づいて、再度見直しを実施していきたいと考えています。また、問題解決は単にマイナス面を改善する対策だけでなく、あるべき姿とのギャップを明確にして、そのギャップを数値で示しながら埋めることが重要であると改めて実感しました。新サービスの社内展開においても、従来のアプローチでは行き詰まりを感じていたため、この考え方を取り入れて対応策を検討していこうと思います。 現状とのギャップは? 今後は、社内で提供しているサービスや新たに展開を進めるサービスに対して、まずあるべき姿を明確に定め、現状とのギャップを具体的に示します。その上で、ロジックツリーなどを活用し、問題をモレなくダブリなく分解することで、あるべき姿に向かって着実に対応策を進めていく所存です。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

データ・アナリティクス入門

A/Bテストで売上向上へ、新たな一歩

仮説検証の重要性を再確認 段階を踏んで仮説検証を進める重要性を改めて認識しました。また、A/Bテストという手法についてこれまで全く知らなかったため、新しい分析方法として今後積極的に活用したいと考えています。 A/Bテストの効果的な活用法は? 売上向上の施策に対しても、効果検証としてA/Bテストを用いてみたいと思います。これまで効果検証自体は実施していましたが、異なる施策を同時に行ったことはありませんでした。今後は実施できる事案を含め、慎重に検討していく予定です。 情報共有と承認のステップ まず、1か月以内に従来の施策とA/Bテストによる効果検証の違い、メリット・デメリットに関して部長会で情報共有を行う予定です。その際、A/Bテストが実施できそうな事案についても紹介し、従来法では得られない効果まで説明します。実施に対する承認を得た後は、来期の1Q内に実務担当者と協力し、テストを実施する予定です。

「検討 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right