クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

クリティカルシンキング入門

分解で見つける成功のカギ

丁寧な分解が重要な理由は? 分解を雑に行うと誤った結論を導き出してしまうため、分解は丁寧に、さまざまな切り口で行うことが重要です。具体的には、分解には「いつ(When)」「どこで(Where)」「誰が(Who)」「どのように(How)」といった視点をうまく使う必要があります。また、分解の方法には、一般的な層別分解だけでなく、変数分解やプロセス分解も活用することが有効です。 多すぎる切り口に注意が必要? しかし、切り口が多くなりすぎると、全体像を見失ったり、結論が見いだせない場合もあります。そのため、市場動向や顧客状況を分析する際は、切り口を複数選んで、場合によっては別の角度からアプローチするように心がけます。 自然材料マーケティングの分析法は? 私は、半導体の新規材料のマーケティング業務を担当しているため、市場動向や材料に対する検討意欲を分析する際、地域別、用途別、コミットメント方法、期待金額別・期待機能別、追加投資別といった基準を用いて、MECE(もれなくダブりなく)を意識して行うようにしています。この分析は、今年度のレビューと来年度の計画立案時に実施します。

戦略思考入門

戦略思考で拓く未来への道筋

学びの関係は? Week1からWeek5で学んだ内容の関係性を整理することができました。適切なゴール設定のもと、全体像を把握し、整合性を確保するプロセスの中で、最短・最速でゴールへ到達するためのアプローチ(差別化、不要なものを捨てる、経営メカニズムなど)を理解し、これまでの学びを体系化できたと感じています。 業務にどう活かす? 今回の学びが一過性のものにならないよう、日々の業務にどう落とし込むかを常に考え、実行に移していく所存です。 10年後の理想は? また、10年後の理想像を明確に描き、その実現のために現時点で何をすべきか検討しています。理想像の設定、その妥当性の検証、関係部署・関係者との連携やスケジュールの策定といった点について、今回のフレームワークを活用しながら議論を進めていきます。 戦略をどう決定? さらに、25年12月までに戦略(方向性)を決定し、全体に発信する計画です。これに向け、具体的な期限と実施内容、関係者を明確にした上でチームで進め、26年からは大きな戦略の中で、短期・中期それぞれの取り組みについて議論を重ねていきたいと考えています。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

クリティカルシンキング入門

具体的に考え、知識を活かす習慣を

誰に伝えるべき? 1つ目のポイントは、誰に何を伝えたいのかを明確にすることで、具体的な問いやイシューを立てることです。2つ目は、その内容を見やすく工夫した資料やメールで伝えることです。最後に、孔子の言葉が示すように、「知識」を単に知っているだけでは価値を生み出せません。学んだ知識を活用するためには、それを考え実行することが求められます。ここにこそ、知識を学ぶ価値と本質があるのです。 目的は何でしょう? さらに、常に目的を意識することが大切です。自分のタスクや上司からの依頼、他部署からの連絡に対して、目的やゴールは何かと常に考える習慣を持ちましょう。加えて、批判的思考も意識する必要があります。自身の思考にバイアスがあることを認識し、「本当にそうなのか」「本質は何か」といった視点から物事を多角的に捉えることが重要です。 知識はどう活かす? 「知っている」や「理解している」状態から、「知識を実践で使えるようにする」ためには、まず6週間の学びをノートにまとめてアウトプットすることが必要です。そして次の学習計画を検討し、申し込みを実施することが求められます。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

戦略思考入門

フレームで拓く戦略の見える未来

現状はどう整理する? 戦略を考える出発点は、まず内部と外部の現状を俯瞰して整理し、正しく把握することにあります。実際の事例から、私たちは目の前の出来事や直近の経験に影響され、偏った見方をしてしまうリスクがあると実感しました。そのため、フレームワークを活用して抜けや漏れなく現状分析を行う重要性を再認識しました。 業界状況をどう見る? また、PEST分析を用いて業界全体が直面する状況を整理し、その上で3C分析を通じて今後の勝ち筋を見出すことに大きな可能性を感じました。中長期的な戦略を立案する過程では、バリューチェーン分析を活用し、自身が所属する製造部門が提供しているユニークな価値について深く考える機会となりました。 分析実践はどう進む? 具体的には、PEST分析を実施して税制の変化などの業界に影響を及ぼす要因を整理し、その影響を製造部門における各プロセスに反映させる方法を検討します。また、バリューチェーン分析の実践例を参考にしながら、どのような付加価値が生み出されているのかを体系的にまとめることで、今後の戦略立案に役立てたいと考えています。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

データ・アナリティクス入門

分解で見えた解決のヒント

進行中の問題は何? プロジェクトの進行において問題が発生した場合、まずはプロセスをできるだけ詳細に分解し、ボトルネックを見つけ出すことで原因を明確にし、解決策の糸口を探していきたいと考えています。 複数原因はどう整理? 一方で、原因が複数存在する場合には、さまざまな対策案を検討する必要があります。実際の業務ではA/Bテストの実施が少ないかもしれませんが、実施する際には1要素ずつ、できる限り条件を揃えて行うことを心掛けたいと思います。 全体像はどう掴む? また、問題の原因を探索する際には、プロセスを細かく分けることでボトルネックに注目し、問題の全体像を把握するよう努めます。 評価基準は納得? さらに、解決策を検討する場合は、適切な判断基準を設定した上で各案の評価を行います。その際、判断基準の重要性や重み付けについても十分に考慮しながら進めることが重要だと考えています。 A/Bテストはどう実施? A/Bテストについては、条件を一致させた上で1要素ずつ実施するようにし、比較が効果的に行えるよう留意していきたいと思います。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

「検討 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right