データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

クリティカルシンキング入門

振り返りで気づく「もう1人の自分」

感覚と経験の再評価は? 私は職業柄、論理的に考えているつもりでしたが、講義を通じて実際には感覚や経験に頼って判断していることが多いことに気づくことができました。この気づきを得られたことは良かったと思っています。また、「もう1人の自分でチェックする」という方法は、どの場面でも活用できると考えているので、これを常に意識しながら業務に取り組みたいと思います。 ITを活用した提案力をどう高める? ITを活用した顧客への提案や課題解決の方法でも、ロジックツリーやMECEといった手法は非常に有効だと感じました。これらを意識して取り組むことで、頭の中を整理するだけでなく、設計資料や提案資料を作成する際にも説得力を高められると思います。 問題解決力の向上の鍵は? 日々の業務では様々な問題が発生しますが、ロジックツリーを用いることで課題を全体的かつ階層的に把握し、本質的な課題を特定しようとしています。研修を通して、自分自身の制約や偏った考え方に気づかされたことを教訓に、視点・視座・視野を意識し、もう1人の自分で常にチェックすることを心がけたいです。

クリティカルシンキング入門

課題解決力を高めるシンプルな秘訣

課題をどう見極める? 問題や課題、論点を明確にしておくことの重要性を改めて感じました。同時に、課題の優先順位をつけることや、課題を設定することの難しさも実感しています。責任のある立場として、課題を見極める判断力や、その迅速な対応力、そして判断センスが求められます。 イシュー表示は有効? また、ホワイトボードやパワーポイントの左上に常にイシューを表示しておくと議論が脱線せずに進行できると思います。イシューという言葉自体は英語で理解しにくい人もいるかもしれないので、問題や課題、論点、目的など、会議やミーティングで全員が理解しやすい言葉に置き換えるべきだと考えています。 意図の確認はどう? さらに、自分が話す時だけでなく、上司や同僚、部下から何らかの問題や課題の依頼があった場合にも、本質的な意図をしっかりと確認するよう心掛けたいと思います。お互いに誤解のないコミュニケーションを取ることができれば、様々なことが噛み合い、より良いワークライフを築けるでしょう。会社全体で課題の判断や解決策のアイデア出しを楽しんで行えるようにすることを目指します。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

クリティカルシンキング入門

視覚化とロジックツリーで解決力UP!

なぜ定量化と視覚化が重要なのか? 定量化して物事を考えることの大切さと必要性、またグラフを作成して視覚化することの重要性を学びました。これに加えて、抜け漏れなく課題を考えるためにロジックツリーを利用し、様々な視点から解決策を導き出す方法が有効であることも理解しました。そして、最も大切なのは、解決すべきイシューを見極めることです。注力すべき課題や目的を明確にし、その役割を踏まえて解決すべき仮説を設定し、問題解決に取り組むことが重要です。 解決策の提示には何が必要か? 解決策を提示する際には、事実や定量データに基づいて解釈を加えることが必要です。また、要素を抜け漏れなく考えるために、様々な仮説を検討し、最終的な目的からずれないように注意することが求められます。 提案とコミュニケーションの手法をどう活用する? 仕事で提案内容や課題の特定、仮説を考える際には、ロジックツリーやグラフの作成などの手法を使って考えるとよいでしょう。また、コミュニケーションを取る際に、立場によって社内外の人がどんなことを考えているのかを言語化することも効果的です。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

データ・アナリティクス入門

5W1Hで開く業務改善の扉

数字はどう生かす? 問題を把握する際には、勘や経験だけでなく、定量的な数字と各工程における「いつ」「どの業務が」「なぜ」「どのように」という観点でステップごとに整理することが大切だと実感しました。この考え方により、現状を正確に把握し、その情報を基に仮説を立て検証することで、具体的な解決策を見出すことが可能になります。 現状をどう読む? 業務改善においては、まず現状を正確に捉えることが必須です。各作業工程を定量的に整理し、5W1Hのフレームワークで状況分析を行います。ただし、数字だけでは捉えられない部分もあるため、現場へのヒアリングを通じて、数値との整合性を確認することが求められます。 仮説はどう進む? また、現状の正確な把握を前提に、仮説を立てて検証を重ねるプロセスが重要です。仮説策定にあたっては、現場担当者の感覚も加味し、実際の状況に即した検証を行うことで、机上の空論に終わらないよう努めています。さらに、最近学んだマーケティングの考え方を活かし、実際の行動パターンや離脱ポイントに注目しながら改善策を検討していきたいと考えています。

クリティカルシンキング入門

ナノ単科で描く未来への学び

意味ある問いは何? 分析を進める際は、適当な手法に頼るのではなく、まず意味のある問いを立てることが大切です。その問いに対して、イシューを明確にし、論理的な枠組みの中で回答を導くことが求められます。また、思考の偏りを排除するためには、フレームワークを活用し、他者との反復練習を重ねることが有効です。 効果検証はどうする? 一方で、制作物の効果検証においては、最初に問いを設定し、その問いに基づいて分析を行うことが基本です。これにより、クライアントの課題を解決するための講義の再設計や、講義の集客向上に向けた具体的な提案を行い、成約の精度をより高いものにすることが可能となります。 講義資料は再検討? さらに、講義資料に関しては、顧客の反応が芳しくない箇所を的確に洗い出し、批判的な視点から見直すことが必要です。これまで経験や感覚で作成していた部分は、一度解体し、フレームワークを用いて再度根拠を明確にする方法が有効です。可能であれば、他者との対話を通じて率直な意見を取り入れることで、内容のブラッシュアップにつなげることが求められます。

データ・アナリティクス入門

分解で見えた解決のヒント

進行中の問題は何? プロジェクトの進行において問題が発生した場合、まずはプロセスをできるだけ詳細に分解し、ボトルネックを見つけ出すことで原因を明確にし、解決策の糸口を探していきたいと考えています。 複数原因はどう整理? 一方で、原因が複数存在する場合には、さまざまな対策案を検討する必要があります。実際の業務ではA/Bテストの実施が少ないかもしれませんが、実施する際には1要素ずつ、できる限り条件を揃えて行うことを心掛けたいと思います。 全体像はどう掴む? また、問題の原因を探索する際には、プロセスを細かく分けることでボトルネックに注目し、問題の全体像を把握するよう努めます。 評価基準は納得? さらに、解決策を検討する場合は、適切な判断基準を設定した上で各案の評価を行います。その際、判断基準の重要性や重み付けについても十分に考慮しながら進めることが重要だと考えています。 A/Bテストはどう実施? A/Bテストについては、条件を一致させた上で1要素ずつ実施するようにし、比較が効果的に行えるよう留意していきたいと思います。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right