データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

クリティカルシンキング入門

三つの視で見える新たな自分

思考のクセって何? だれもが、それぞれの思考のクセを持っており、そのクセから情報が発信されます。思考のクセとは、自分が考えたいことをそのまま想起してしまう傾向のことで、たとえば、ある商品やサービスを連想するとき、頭の中にその対象の特徴があらかじめイメージされる状況に例えることができます。 三つの視の意味は? このような思考のクセに気づくために、「三つの視」を活用することが推奨されます。具体的には、視点、視座、視野という三つの異なる角度から物事を捉え、さらに「具体」と「抽象」の両面から考えることで、思考の偏りに気づく助けとなります。 課題解決はどうする? 私は業務上、課題解決を行う中で、さまざまな会話や質問を通じて相手の要求を引き出す必要があります。そのため、「三つの視」の考え方を、会話の構築や適切な問いかけに活かすことを意識しています。常に疑問を持ち、考え続けることで、自分の思考の偏りに気づく機会が訪れるはずです。 対話で気づく理由は? たとえば、ある会話やメール、チャットの中で「なぜこの話題に偏っているのか」「背景にある意図は何なのか」と自問することにより、他の視点からのアプローチが見えてくるでしょう。このように、「三つの視」と「具体と抽象」の視点を活用しながら、自分の思考のクセを意識することが大切だと感じています。

クリティカルシンキング入門

問題解決に導く情報分解の極意

イシューって何? イシューとは何か、またそれを設定して考えることの重要性について、改めて学ぶ機会となりました。まず、問題を解決するための方向性を決めるために、情報を分解していく手法や、グラフを用いた視覚化、さらに表を加工するなど、これまで学んできたことを実践的に振り返ることができたように思います。しかし、情報を細分化することに関しては、まだ苦手だと感じました。これを克服するために、実際の業務を通じて追体験を重ねていきたいと考えています。 課題の捉え方は? 日々の提案資料を作成する際には、その提案が本当に重要な課題を特定できているかどうかを自問自答しながら、資料作成に取り組むことを心がけています。会議に参加すると、イシューがずれていると感じることや、時には自分がずらしてしまったかもと思うことがあります。そのため、適切な課題を捉えるという大前提を忘れないようにしたいと考えています。 PPTの下準備は? また、PPTを作成する際には、最初からPPTに向き合うのではなく、Miroなどのツールを活用してラフスケッチから始めることを心がけたいです。その際には、問題を分解し、グラフを用いて視覚化し、一手間かけて表を加工することを意識します。そして、イシューを特定した状態で会議に参加できるよう、事前準備をしっかりと行うことを目標にしています。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

デザイン思考入門

可能性を拓く営業とデザインの出会い

デザイン思考はどう違う? 今回の講義では、デザイン思考が唯一の正解ではなく、仮説・分析・検証といった他の思考法と組み合わせることで真価を発揮する点が印象的でした。特に、コンサルティング的なアプローチとの補完関係を強調していた内容が新鮮に感じられ、今後、SPIN営業法との親和性やその違いについてもさらに深掘りしてみたいと思いました。 視点の広がりは何故? また、課題で「まな板のフロー」を考える際、無意識にデザイン思考の5ステップを模倣してしまった経験から、視点の幅を広げる必要性を強く感じました。 顧客対話はどう磨く? 営業活動においては、顧客の課題を深く理解し、潜在ニーズを引き出すことが重要です。デザイン思考の「共感」や「アイデア発想」は、SPIN営業法の質問設計と共通する部分があり、顧客との対話をより創造的にする効果があると感じています。さらに、製品提案にとどまらず、顧客体験全体を設計する視点を取り入れることで、差別化された価値提供が可能になると考えています。 共感と発想の理由は? 今後は、まず顧客ヒアリング時に単なる要件確認に留まらず、顧客の背景や感情に踏み込む「共感フェーズ」を意識します。次に、営業提案においては、既存の枠を超えた解決策を模索する「アイデア発想」のプロセスを積極的に組み込んでいきたいと思います。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

クリティカルシンキング入門

「本質的な問いが課題解決のカギでした」

本質的な問いとは何か? これまで、適切な課題を見つけることが難しいと感じていました。しかし、今回、「本質的な問いの見つけ方」を理解することで、これまで難しいと感じていたイシューの見つけ方が分かるようになりました。本質的な「問い」を見つけるためには、「問いから始めること」が重要だということを改めて学びました。かつての著名な方々が「答えを見つけるよりも問いを見つける方が重要」と述べた理由に深く納得しました。 問題解決には問い共有を 何かを提案したり、物事を解決する際にはまず問いから入り、その問いを心に留めておくことが重要です。問題解決や課題提案時には、まず問いを意識し、その問いを明確にする。そして、問いをチーム内で共有し、質の高い問題解決につなげていきたいと思います。 問いを意識するシーンとは? また、スライド作成時や社内外のミーティング、報連相の場面など、さまざまなシーンで、「問い」を意識すれば、無駄のないスムーズな情報のやり取りができると感じました。 問いを習慣化するには? 日頃からまずは「問い」を意識して物事を見ていく、感じていくことで、これを習慣化させたいと思います。日常の中で様々な選択が求められる中で、その都度「今ここで答えを出すべき問い」を明確にし、チーム内で共有することを心掛けていきたいです。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

問題解決力を磨く3つのステップ

問題の原因をどう理解する? 問題の原因を探る際には、単純に数字に飛びつくのではなく、割合などを他の数字と条件を合わせ、その数字の本質を理解し、原因を考える必要があると学びました。 仮説の選択基準は何? また、複数の仮説のうちどれを選択すべきか簡単に判断できない場合には、判断基準を設定し、仮説ごとに評価し点数を付ける手法を学びました。その際、判断基準項目の影響度に応じて重み付けを行う必要もあることを理解しました。 新システムの導入検討はどう行う? 新しいシステムや運用の導入検討を行う際には、メリット・デメリットごとに判断基準を設け、現行と比較することで、周囲に納得感を持ってもらえる説明ができると思います。また、収支検証では、単純に数字に飛びついて結論を出すのではなく、委託されている人数や内容、イレギュラー案件の有無など、できる限り事情を細かく理解し、条件を揃えた上で検証を進めるよう意識します。 日常的な思考の癖付けの重要性 日常的に「この物事の切り口は何だろう?」と意識することで、必要なときに的確な判断基準をすぐに想定できるようになりたいと思います。そのため、日頃から思考の癖付けを行うことが重要です。また、数字を扱う際には、数字同士の条件が合っているかどうかや、数字ごとの持つ重みを意識するようにします。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right