マーケティング入門

感動体験が未来を拓く

感情と体験のつながりは? 「経験が感情に紐づき、その人にとって唯一無二になる」という考えが最も印象的でした。単に商品を販売するのではなく、顧客との長期的な関係を築くことでライフタイムバリューに結びつけるというアプローチは、体験の変化や社会の課題解決といった視点が、長期的な顧客関係形成において重要であることを教えてくれました。 なぜ起業の知見が必要? この学びは、新規業務の提案に活かすとともに、将来的な起業にも役立てたいと考えています。特にスタートアップでは、短期的な成果と長期的な仕組み作りの両面が求められるため、大手企業の事例だけでなく、中小企業の成功と失敗の両パターンから経験を積む必要があると実感しました。そのため、書籍や動画サービスを利用し、情報を常に収集する習慣を大切にしています。 どうやって学びを深める? 具体的には、書籍と動画の二つの媒体から継続的に情報を得る計画です。購入した本は全て読み通すのではなく、目次やダイジェストを参考にし、読むべき内容かを判断してから深く読み込むようにしています。また、今後は学習時間に余裕ができると考え、その時間を有効活用して継続的な学びを心がけるつもりです。さらに、部署内でアウトプットの機会を設け、知識を伝えることでさらに習熟を目指していきたいと考えています。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

明確な未来への第一歩

学びの整理はどう? 講座で得た学びを整理し、ありたい姿を描きなおすことで、これまでぼんやり感じていたことが明確になりました。今回の作業を通じ、今後の目標や現在抱えている課題、そしてその課題を解決するために実行すべきことが具体的に見えてきました。 次に何をすべき? また、受講を終えた今、次に取り組むべきことがはっきりしてきたと強く実感しています。仕事と並行しての学習が大変な時期もあり、あと少しで済ませようという気持ちにもあったものの、まだ足りない部分や今後への危機感を改めて感じることができました。そのため、次のアクションについてじっくり考える貴重な時間となりました。 経験はどう活かす? これらの経験は、モチベーションを保ち正しい方向性を模索する上での振り返りとして、大変意義があると感じています。たとえば、フレームワークの知識は、仕事で内部環境や外部環境を分析する際に具体的な切り口として役立っています。 自己研鑽はどうする? さらに、受講後も土曜日に翌週の課題に取り組む学習習慣を継続し、自己研鑽の時間を確保していきたいと考えています。加えて、実際の分析作業で不安を感じるExcelの使い方についても、実践を通して学びたいと思っており、まずは関係する講座を探すところから始めるつもりです。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

四つの視点で広がる実践力

なぜ各検証が必要? 改めて、What、Where、Why、Howの各ステップとその検証内容を体系的に復習できたことに、大きな意義を感じています。どのステップも欠かすことなく実施し、各段階でしっかりと仮説検証や多角的な視点を持たないと、目的とする分析結果に至らないことを実感しました。 どうして理解が深まる? この数週間の学びを通じて、社内で活躍する優秀な上司や同僚がどのような思考のもとで発言しているのか、またその経緯がどのようなものかを少しずつ理解できるようになりました。以前は難解で理解に苦しんだ会話も、どのステップでどのような仮説のもと話が進んでいるのかを想像することで、より明瞭に捉えられるようになりました。今後は、他者の考え方を客観的に理解するだけでなく、自分自身もその思考法を基に説得力ある会話が展開できるようになりたいと思います。 どう学びを実践する? まずは講座内容の復習に取り組みたいと考えています。ライブ授業やグループワークを通してデータ分析の全体像を把握できたため、実際の利用シーンを思い描きながら再度学習することで、今後実践可能なスキルとして身につくと感じています。そして、日常生活や小さな出来事においても、仮説思考や問題解決思考を持って物事に取り組む習慣を定着させていきたいと思います。

データ・アナリティクス入門

実践で磨く問題解決力

効果検証はどうする? 問題解決のフレームワーク(What, Where, Why, How)に沿って思考を進めることで、ただ思いつきで施策を導入するのではなく、実施した施策の効果をきちんと検証できます。また、このフレームワークを活用しA/Bテストを実施することで、もし施策がうまくいかなくても別のアプローチを試し、再度検証を重ねることが可能です。こうした手法により、より効果的な解決策を見出し、継続的な改善へとつなげることができます。 問題の原因は? グループ店舗においては、業績の高い店舗と低い店舗との違いを明確にすることが重要です。たとえば、低実績の店舗では、顧客への働きかけが不足しているのか、またはスタッフのスキルに問題があるのかといった原因を順を追って分析することで、真の問題点を特定できます。このプロセスにより、場当たり的な対応に終始せず、効果的な解決策を集中的に立案・実行することが可能になります。 実務で活かす方法は? 私は現在、グループ店舗の実績向上を目指し、これまで学んだ問題解決のフレームワークを実務で活用しています。そのため、今月上旬を目標に各店舗の問題点を分析し、仮説を立てた上で対応策を検討します。そして、来年度に向けた対策スケジュールの策定と実行に向けた準備を進めていく予定です。

データ・アナリティクス入門

問題解決力が飛躍的に向上した学び

問題の明確化の重要性とは? 問題解決の4ステップ(What→Where→Why→How)のうち、最初のWhat(問題の明確化)の重要性について学びました。問題の明確化には、ゴールと現状とのギャップを定量的に数字で示すことが大切です。これにより、現状維持でよい部分と強化すべき部分が明確になります。 未来を見据えた戦略とは? さらに、問題がない場合でも、よりよい結果を目指してテコ入れをする際(例えば単価改定や機能追加など)には、現状の状況判断が重要です。また、「もれなくダブりなく」というMECEの洗い出しも欠かせません。 情報共有を促進する方法は? 例えば、自社ECサイトの会員数を120%に伸ばしたい場合、ロジックツリーやMECEを使って会員登録のモチベーションとなる部分を洗い出したり、利用者に行うアンケートの項目を設定する際に役立つと感じました。ロジックツリーを使うことで情報を可視化し、他のメンバーとの情報共有にも役立てられそうです。 過去の例に頼らない新しいアプローチとは? これまで、企画やプロモーションは過去の例を参考に進めることが多かったですが、今後は目的を明確化し、What(問題の明確化)を意識して進めることで、現状の把握に役立て、それを基にした立案に活かしていこうと思います。

クリティカルシンキング入門

イシュー設定で見える課題解決のカギ

イシューを特定する重要性とは? イシューという単語から大きな学びを得ました。 まず、「問いは何なのか」を意識することが重要です。イシューを特定し、内容を明確にするためには、優先順位をつけることが必要です(例えば、ロジックツリーの活用)。一度決めたからといって固定するのではなく、環境変化や必要に応じてブラッシュアップすることも大切です。 問いの意識で変わるミーティングの質 最近、月ごとの売上資料を見て「課題は何か」と聞かれることが増えました。この際、『問いは何なのかを意識する』ことで、イシューが特定できたり、共有できる基盤が整ったりします。その結果、ミーティングや事前準備では「方向性がどちらか」「何をすべきか」を明確にして伝えることが可能になります。 知識と視野を広げるためのアプローチ 『問いは何なのか』を『意識し続ける』ことに加えて、「その問いが適正かどうか」や「適正でなかった場合のフォローアップの考え方」といったアプローチも欠かせません。また、自分の狭い考え方に固執せず、常に俯瞰の目線を持ち、他者の意見を取り入れることが重要です。こうしたプロセスを繰り返すことで、イシュー設定のクオリティを向上させていきたいと思います。 遠回りが一番の近道という姿勢で、地道に取り組んでいくつもりです。

データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right