データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

マーケティング入門

マーケティングで共感を引き出す秘訣

マーケティングとは何か? 顧客に対して何を伝え、相手の立場に立ってどのように提案するかについては意識していましたが、改めて「マーケティングとは何か」という定義から学ぶことで、私の考えがまだ狭かったことを認識しました。魅力を伝える際には、その魅力を正しく相手に認識してもらえるようなサイクルを作ることが重要です。そのためには、自分の価値観だけでなく、相手にも理解してもらえる共通の定義や認識を持つことが大切だと再認識しました。 学びをどう生かす? この学びを生かせる場面としては、組織内での課題解決への提案や、組織外に向けた企画立案が挙げられます。自分の考えと相手がいる中で、どのように進めれば良いのかを考える際に、自分の考えやビジョンを提案するためには、相手に正しく共感してもらうことが大切です。今回のマーケティングのスキルは、そのような場面で活用できると感じました。 イシューの特定と課題設計 具体的には、まずイシューを特定します。現在の現状がどうで、課題は何か、そしてその課題が存在する際にはどのような状態を目指すべきかを設計します。誰に、何を、どのように伝えていくべきかを考え、必要に応じて絞り込みを行いながら全体図を描いていきます。

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

戦略思考入門

目的を見極め戦略を磨く学び

目的設定はなぜ大事? 目的を明確に持つことは重要です。目標がなければ、その後の戦略や行動がずれてしまう可能性があります。そのため、目的を明確にすることが大切です。また、戦略や戦術で迷ったときは、目的に立ち戻り再度整合性を確認すると良いでしょう。そして、視座を上げることも大切です。具現化する際、時折全体の目線で確認し、対局を見るように心がけることが重要です。 どうして優先順位決め? 新規顧客の開拓や組織風土を含む多くの組織課題の中でも、優先順を決めて取り組むことが必要です。特に優先度の高い課題から対応していくことが効果的です。追加で入る業務については、本当に必要なのか、その業務目的を確認することが求められます。ルーティンワークが多い場合でも、課題解決を積極的に進めるようにしましょう。 価値創出はどうする? 価値を生むことに目を向け、課題を適切に抽出する目を養うことが大切です。毎週ひとつの課題を取り上げて解決に取り組むようにしましょう。新しい課題については、まずフレームワークで対応できるかを調査し、フレームワークを使う習慣をつけることが有益です。また、関係者に説明する際には、情報を整理してわかりやすく伝えるように心がけましょう。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

戦略思考入門

戦略的選択で未来を創る

ゴールはどう決める? 戦略的思考という言葉を明確に言語化できてはいなかったものの、学習を通してその理解が深まりました。特に、「やるべきこと」と「やらなくてもよいこと」を選別する重要性を実感しています。問題が山積している状況ではあれもこれも手をつけたくなりますが、まずはゴールを明確に設定し、現時点で本当に必要なものを絞り込むことが効果的だと感じました。 事業課題はどう整理? また、所属する事業全体の課題設定と対策立案においても、この戦略的思考が大いに役立つと考えています。事業全体になると対象も広がり、解決すべき課題が多いため、あえてゴールを決め、取るべき行動を選別することで、最短かつ最速で理想の事業状態に近づけると期待しています。今後は、担当業務の範囲を超えた広い視野で戦略思考をどんどん活用していきたいと思います。 未来設計はどう進む? さらに、事業全体の課題と対策を自分なりに整理し、上司と意見交換を行いたいと考えています。そのため、事業の今後3年の理想像を、定量的・定性的な面から明確にし、現状とのギャップをもとに課題を洗い出す予定です。学んださまざまなフレームワークや手法を、実際の業務に積極的に活かしていきたいと思います。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

仮説から未来を拓く学び

なぜ仮説は大切? 「良い仮説」という言葉が非常に印象に残りました。これまで、問題が発生した際には、過去の経験や思い込みに基づいた一方的な判断に頼っていた部分があったと感じています。今後は、問題に対して複数の仮説を立て、それぞれを検証していくことが大切であると考えています。 売上課題の原因は? 私の担当している製品販売では、代理店を通じた受注や売上に関する問題が頻繁に生じます。こうした課題に対しては、さまざまな仮説を立て、検証を進めることで問題解決を図る必要があります。特に、施策と受注売上の関係性を十分に考慮して対応することが重要だと思います。 セミナーの現状は? まずは、施策に関する問題点を整理することから始めます。長年、定期的にセミナーなどを実施してきましたが、必ずしも思うような成果に結びついていない現状があります。今後は、まず顧客のニーズを正確に把握し、現行のセミナー内容が実際に顧客の要望に合致しているのか、改めて検証する必要があると考えます。 3C分析で状況は? そして、まずは3C分析を通じて状況を明確に把握した上で、複数の仮説を立て、順次検証を行っていくことで、今後の改善策を模索していきたいと思います。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right