データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

マーケティング入門

顧客の声を形にするビジネスの秘訣

顧客ニーズはどう捉える? 顧客のニーズを的確に捉えることの重要性を痛感しました。たとえばある企業では、顧客の声を反映してマスクや服装といった製品を生み出し、需要不足という問題を解決することで、良い事例となっています。このように、顧客のペインポイントをゲインポイントに変換することが重要であると理解できました。また、製品のネーミングにも工夫が求められます。顧客発想で名前を考えると、商品を認知しやすく、具体的なイメージも湧きやすくなるため、顧客自身の行動を促しやすいと感じました。 自社の強みをどう活かす? さらに、企業は自社の強みを理解し、それを活かして顧客が求めるものを提供することが大切です。競争が激しく、商品や法令が厳しい中での差別化は難しいですが、改めて自社製品を選ぶ理由や、そのメリットを細かく分析していくことが必要だと考えます。また、潜在顧客については、カスタマージャーニーを実施して、新たに分析を始めることの必要性を感じました。自社の強みについても、再考する必要があると実感しています。 顧客の行動可視化の方法は? 具体的には、顧客からのアンケートを再度読み直すことが第一歩です。次回のアンケートでは、施策や欲しい情報だけでなく、「なぜ選んだのか」といった基本的な部分も問いかけたいと思います。さらに、顧客向けのインタビューや観察を通じて、顧客の行動をより可視化し、ターゲット設定の見直しを図りたいです。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

戦略思考入門

「捨てる判断で顧客満足度アップ!」

捨てる判断の本質は? 実践演習で最も印象に残ったのは、「捨てる判断」を明確化することでした。目的や指標、課題、そして自身がかけた工数など、さまざまな視点から判断をする重要性を学びました。これまでは工数ばかりが判断基準でしたが、工数がかかっても必要なこと、逆にかからなくても不要なことを見極める必要性を認識しました。この理解が不十分だったので、大変勉強になりました。また、不要なものを捨てることがかえって顧客の利便性につながることも参考になりました。過去の惰性で物事を増やすのではなく、根拠を持って捨てることの重要性を学んだのです。 定量行動の意味は? 今後の企画立案では、この学びを特に意識して取り組んでいきます。特に、定性ではなく定量を意識して行動することが重要です。効率的・効果的に目的を達成するためには、定量的な判断が不可欠です。この判断は、さらに投資をする価値があるのか、あるいは捨てるべきか、方法を変えるべきかという貴重な基準になります。これを意識しながら行動していきます。 効果的実践のステップは? 実践に向けたステップとして、目的や方針の確認、情報の掘り下げ、定性的内容を定量化すること、現状の成果と課題の把握、時間軸をベースとした成果の評価、そして課題解決に向けた優先順位付けを行っていきます。さまざまな選択肢が出てくることも予想されますが、周りの意見も参考にしながら計画を策定していきます。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

聞き返しを少なくする日本語の工夫

日本語の主語省略問題とは? 日本語は主語や述語がなくても成立してしまうことが多いと感じています。特に会話の中で聞き返したり、聞き返されたりする際には、主語が省略されがちです。これを改善し、基礎から日本語を話したいと思います。 文章を効果的に伝えるには? 文章を効果的に伝えるためには、一番伝えたいことを複数の根拠で支えることが重要です。この方法を学ぶことで、伝わりやすさが向上することを実感しました。また、全ての情報を伝えることが必ずしも相手に伝わるわけではありません。相手の立場を考慮し、必要な情報を取捨選択し、順序だてて話すことで、より理解しやすい文章を作ることができます。 課題解決に必要な複数の根拠 課題解決においては、提案や意見を述べる際に、主張を支える複数の根拠を持つことが重要です。これにより、矛盾のない納得感のある話をすることができると考えます。相手の主張に違和感を感じた場合も、その主張を支える根拠を探ることで、その理由を明確に伝えることができるでしょう。 主張の際の省略を避けるには? また、自分が主張をする際には、主語や述語を省略しないで構成を考えることが求められます。主張、すなわち結論を先に述べてから理由を説明することが効果的です。逆に、受け手の立場では、主張を支える要素に注目し、違和感を感じた場合にはピラミッドストラクチャーを用いて情報の抜け漏れを確認することが考えられます。

クリティカルシンキング入門

クリティカルシンキングで視点を磨く旅

事実を見つめ直す? 事実と思っていたことが、本当に事実なのかを疑う視点は重要です。クリティカルシンキングを学ぶことで、正解に近い「最も妥当な答え」を模索することができると考えます。私たちの思考は容易に誘導されがちであるため、視野、視座、視点の意味を理解し、思考を転換することが鍵です。視座を高く、視野を広く、視点を柔らかく持つことが大切です。特に「今、何をイシューとして考えるべきか」を常に意識し、組織全体で情報や課題を共有することが求められます。 どんな時に必要? 毎回クリティカルシンキングを駆使するのは疲れるため、将来に影響が出る場面や大きなお金が絡むとき、仲間や関係者に大きな迷惑をかける可能性があるときに特に活用しています。企画作成の際には、データを重視し、もう一度深く考える必要があります。また、一緒に働く仲間との対話では視座、視野、視点を意識しながら、仲間が直面する問題や考えをより良い解決へと導く努力をしています。 議論の進め方は? 会議や話し合いの際には、課題を明確にすることが重要です。また、議論の本質を見失わないようにし、適切な方向へ議論を導くよう努めています。専門用語を多用せず、他人の意見を尊重しつつも、クリティカルでない意見がある場合には正しい方向へと誘導したいと考えています。今回は、グループワークを共にした仲間たちの視点を想像しながら、異なる視点で考えることの重要性を感じました。

クリティカルシンキング入門

深掘りで変わる!バイアス解消術

ライブ授業で得た気づきとは? ライブ授業の実習を通じて、自分の思考にバイアスがかかっていることを実感したため、物事を深掘りすることの重要性を改めて感じました。MECE(Mutually Exclusive, Collectively Exhaustive)やロジックツリーといった手法を学び、それを自分のものとして使いこなせるようになることで、より深く物事を考え振り返る行動につなげることができると考えています。 提案資料にどう活用する? 社内システムの担当として、ITを駆使し事業課題を解決するシステムの企画や立案を行う際には、一度自分の考えを止めて客観的な視点を取り入れ、提案資料にその考えを反映させるよう努めています。そうすることで、より説得力のある資料を作成できるのではないかと考えています。また、部下との評価面談では、クリティカルシンキングを活用して部下の考えを引き出し、自分の意見も効果的に伝えることができると思っています。 判断を支える習慣とは? 自身で何らかの判断を行う際には、なぜその判断に至ったのか自問する習慣を身につけることが重要です。その問いかけをロジックツリーなどに書き起こして思考を整理します。これを実践するために、PCの付箋アプリにこれらの行動を記載して常に視界に入れるようにし、ロジックツリーなどで思考を整理するためのメモ用紙を常に手元に置いて実践していきたいと考えています。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right