クリティカルシンキング入門

「問いを意識して思考の偏りを解消!」

思考の偏りをどう克服する? 本講座を通して、特に印象に残った点を以下にまとめます。 まず、自他ともに思考に偏りがあることです。自分の思考が正しいのか、他に考えがないかを常に疑い、相手の思考にも癖があることを理解した上で傾聴する習慣を身につけたいと思います。 問いの重要性を実感? 次に、「問い」の重要性についてです。適切に課題を解決するためには、何となく考え始めるのではなく、「問い」を意識して考えることの重要性を学びました。実務においても、ディスカッションで話がずれないように「問い」を意識し続け、組織全体に共有することを心掛けたいです。 広報業務での方針は? 私が担当する広報業務には5つの分野があり、動画制作などでアピールしたいことが異なり、意見が割れることが多いです。そのため、思考の偏りがないかを意識し、「問い」を持ち続けることで全体の方向性がぶれないようにしたいと考えています。 年度計画をどう改善? また、年度計画の立案についてですが、これまでは計画が曖昧でトップの意見によって業務の方向性が変わることがありました。チームで年度計画を立てる際に、目的や必要なことを掘り下げ、「問い」を設定することに重点を置いて課題解決の施策を決める必要があると感じました。 これらを実施するために、以下の2点を行いたいと思います。 1. 本講座で学んだことをアウトプットし、資料にまとめて他者に説明すること。 2. クリティカルシンキングの反復練習を書籍を通じて実施すること。 以上が、私が本講座を通して学び、実践したいことです。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

戦略思考入門

視野を広げる!フレームワーク活用法

業務で使うには? フレームワークの種類やその使い道を理解できた一方で、自分の業務にどのように適用するかについては、少し時間が必要だと感じています。 経営視点はどう? 経営者の視座を持ち、大局的かつ長期的な視点で考え、行動することが求められます。フレームワークを使って会社の現状を整理した上で、「より良く働くにはどうすれば良いのか」「どのような社員が今求められているのか」を把握することが重要です。 自分の軸は何? また、ジレンマを恐れず、「自分の考え方の軸」を持つことが大切です。物事の一面だけで判断してしまいがちですが、自分自身の価値観を基に、何がジレンマになっているのかを言語化し、より良い解決策を見つけることに注力したいと考えています。 集合知は必要? さらに、『集合知』を活用することの重要性を感じます。意見を出し合う際に、自分の意見が採用されるかどうかに気を取られず、多様な意見を取り入れることにより、より良いアイデアを生み出せるよう心がけたいです。 未来をどう捉える? 加えて、先を見て行動する必要があります。ゴールを設定するにあたり、短期的な視点ではなく、長期的に見たときの会社全体での最適解や、自分にとっての顧客について考えるべきです。そして、SWOTなどのフレームワークを活用し、現状を漏れなく整理し、次の施策を考えることが欠かせません。 挑戦はどう進む? 最後に、苦手としている意見出しやディスカッションの場においても、『集合知』を意識し、次に進むために積極的に取り組んでいきたいと考えています。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

マーケティング入門

売れる理由は5要素の秘訣

売れる理由は何? 売れる理由を考える際は、「これだけで売れる」という一点に頼るだけでなく、さまざまな視点から売れる理由や売れない理由を検討することが大切だと感じました。その中でも、無限に考え続けるのではなく、「比較優位性」「適合性」「わかりやすさ」「試用可能性」「可視性」という5つの要素に絞ることが効果的だと思います。特に「わかりやすさ」と「可視性」については、一歩引いて全体を見直さないと、顧客のニーズを見失う可能性があると気づきました。整理した考えを知人に意見を聞くなどして、効果的にブラッシュアップすることも有意義でした。 誰の課題を解決? 一方、自社サービス(BtoB)が具体的にどのような企業の、どのような課題を解決するのかという点に関しては、自身の中で十分なイメージを持てていなかったと反省しています。今週の例では、「インスタント食品」という大まかな印象は伝えられるものの、具体的に解決すべき課題が明確になっていないため、市場に十分に訴求できていないと感じました。サービス名から直感的にどのような商品かイメージしづらいため、サービス名を見直すことで上記5つの要素を再評価できるのではないかと思いました。 サービス名は適切? また、サービス名から実際に商品やサービスのイメージが湧き、使ってみたいと感じてもらえるかどうかを確認するため、可能であれば経営者の知人など、ターゲットに近い層に意見を求めるのが良いでしょう。その前に、顧客を分類し、絞り込みを行った上で、一致する層の方々にアポイントを取ることが重要だと考えています。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

戦略思考入門

戦略的思考で未来を描く

戦略って何だろう? 戦略とは、ゴールに到達するための計画であり、最短かつ最速で実現可能な道筋だと理解しました。そのためには、複数のルートを考慮し、無駄を排除した選択が求められます。しかし、戦略を実現するには戦略的な思考をもって計画を立てなければ、実現の可能性が低くなってしまいます。 どんな手段が有効? 重要なのは、目の前のゴールだけではなく、将来的なゴールを描き、ゴールに到達するための多くの選択肢を用意することです。それには、選択肢に独自性や競争優位性をもたせることで、リソースの無駄遣いを防ぎます。実生活に置き換えることで、戦略的思考に多少なりとも触れることができたと感じています。目的地に向かうためには様々な手段があり、資金にも限りがあります。その中で、早く到着するにはどうするか、安く到着するにはどうするか、どのように決断するかと日々の選択に置き換えました。 ゴールは明確か? 新規事業の計画では、現状は実施時期を含め曖昧な状態なので、まずはゴール設定を明確にする必要があります。ゴールに対する計画も現状では曖昧ですので、複数の選択肢を自ら準備し、リソースを考慮した実現可能性の高い計画を提案したいと考えます。 これからどう動く? 1. 今回の講義も含めた学びに集中し、思考のあり方を再設定する。 2. 日々の課題解決において、その先の問題がないかを意識し解決策を考える。 3. 他に選択肢がないかを常に意識する。 4. リソースへの意識を持ち計画を立てる(特に自部署では要員数が重要)。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right