戦略思考入門

守りと攻めが共鳴する現場戦略

安全と生産の秘訣は? 自動車業界における安全性、特に保安部品の長年の取り扱い実績を土台として、製品の幅を徐々に拡大している点が印象的でした。現状では、工場や設備を活用して他社よりも大量生産を実現する低コスト戦略と、新たな製品開発による差別化を両立させています。特に、近年の自動化や電動化の流れに対応するため、電気電子の技術を組み合わせた車づくりや部品開発がリーズナブルに行われている点は非常に理解しやすいものでした。 多様化市場でどう挑む? また、最近の市場環境では自動車購入者が減少し、顧客のニーズが多様化していることから、購買力の高い世代を中心にターゲットを絞った戦略が取られている印象を受けました。伝統的な単一戦略に固執せず、時代の要請に応じて柔軟に戦略を見直していく姿勢は、全体として適度なリスクヘッジがなされていると感じます。 既存設備の活かし方は? 変化が絶えず続く中で、既存の大量生産設備をどのような商品企画に活かすかが大きな課題です。共通部品ではなく、個別仕様の製品が増えると固定費が増大するリスクがあるため、製品ラインナップの分類が極めて重要だと考えました。私が所属する部署では差別化を進める業務に従事していますが、既存製品とのシナジー効果を改めて検証し、各戦略について自分なりの見解と分析を深める必要性を感じました。 攻守両立の秘訣は? 今一度、苦戦している事業部の製品を見直し、差別化技術で解決の糸口がないか検討したいと思います。撤退するのは容易ですが、長年培ってきた経験と実績を築くのは困難です。攻める戦略だけでなく、守る戦略としての差別化を武器に、部門の一員として今後も貢献していきたいと強く感じています。

データ・アナリティクス入門

本質を見抜くヒントがここに

フレームワークはどう活かす? ロジックツリーやMECEのフレームワークについて改めて学ぶ機会がありました。すべてを漏れなく、重複なく進めようとすると議論が停滞する可能性があるため、まずは注目すべき要所を決めた上でアイデア出しを行い、その後に漏れや重複を検証する方法が効果的だと感じました。実務上も、末端の階層にまで拘りすぎないことが重要だと思います。 戦略の組み立て方は? 戦略は「重要課題の特定とその課題を解決するための具体的な行動計画」と定義しています。そのため【What】で問題を明確化し、【Where】で問題箇所を特定し、【Why】で原因を分析し、【How】で解決策を立案するという順序が非常に大切だと感じました。正しい課題設定ができれば、その課題の半分以上は解決に近づいているという言葉にも共感するところです。 問題の構造は見えてる? 表面的な問題に目を向けがちですが、問題を構造的に捉えることが最も重要です。たとえば、全体の受注率だけでなく、個々の受注率や各セグメントごとの受注率、さらには失注要因などを多角的に分析しなければ、真因にたどり着くことは難しいでしょう。問題の構造を要素ごとに分解し、どの要素がトリガーとなっているかを可視化することが鍵だと改めて感じました。 具体化はどう進める? 面倒に思えるかもしれませんが、問題を構成する要素を頭の中だけでなく、文字や図で具体的に表してみることが大切です。手書きでメモを取ったり、マインドマップを作成するなどして、漏れや重複に気づけるよう工夫してみると良いでしょう。ただし、これらのフレームワークはあくまで道具であり、型にはめすぎたり神格化しないよう、柔軟に活用することが求められます。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

クリティカルシンキング入門

問いで拓く学びの世界

どんな問いを見つける? どのような問いを立てるかが、その後の課題設定や解決策の方向性を決定づけるため、非常に重要なポイントと感じています。問いの立て方ひとつで、取り組むべき課題や解決方法が大きく変わることを実感しています。 本質の問いは何? また、本質を捉えた問いとは、なんとなく考え始めるのではなく、常に問いを意識し、組織全体で共有されるべきものです。かつては「問い」がうまく立てられないと感じていましたが、どの問いも「不正解」であるわけではなく、より最適な問いを見つけるプロセスの一環であると理解するようになりました。人は無意識のうちに考えを進め、問いの本質を見失いがちである点にも気づきました。 仕事ではどう問いかける? 実際の仕事では、抽象的な目標が示される中で自分の課題ややるべきこと、解決方法を見つける過程で、まずは課題の整理、原因分析、そして「なぜなぜ」のアプローチを実践するようになりました。こうしたプロセスを通じて、解決策や具体的な打ち手が見えてくると感じています。 問いにじっくり向き合う? 問いに向き合う際は、すぐに「これだ!」という結論に飛びつくのではなく、じっくりと時間をかけて向き合うことが大切だと実感しています。また、問いかけ形式で具体的に考えることや、グラフや視覚化、表の加工といった手法を用いて、根拠をしっかりと押さえながら解決策を見出すよう努めています。 評価で問いは正しい? たとえば、人事考課の時期に自己評価や上司からの評価を考える際、期初の目標設定の段階で正しい問いがすでに組み込まれていることに気づきました。この経験から、正しい問いの設定が評価にも大きく影響するという点を再確認しています。

クリティカルシンキング入門

日常に潜むクリティカル・シンキングの魅力

クリティカル・シンキングとは? クリティカル・シンキングとは、主観にとらわれず客観的に考える力のことを指します。この力を得るためには、「言われてみれば当たり前」のことを愚直に実行することが重要です。また、クリティカル・シンキングは全ての土台になる思考力であり、本を読んでも簡単には身につかないとされています。 仕事のシーンで活かすには? 仕事のほとんどは、「誰かに何かを伝えること」、そして「課題解決や意思決定」に関連しています。具体的な例としては、顧客対応の場面で顧客がなぜその問い合わせをしてきたのかを理解することが挙げられます。また、数字分析と解決策の策定においては、想定される解決策が本当に他にないのか、またそれが最適なのか振り返って考察することが求められます。 採用面接で深掘りするには? 採用面接では、用意された回答の裏にある本音を「なぜ」と問いかけて深堀りすることが重要です。また、業務効率化においては、その業務が必要な理由や他に方法がないかを検討します。1on1のメンバーコーチングでは、メンバーがそう考える理由を理解し、無意識的に可能性を絞っていないかを確認します。ファシリテーションにおいては、有意義な議論ができるよう問いかけを設計することが求められます。 日々の習慣として振り返る 日々、「本当にそれが最適解か」「他にも方法はないか」という振り返りを習慣化することが大切です。また、リソース、コスト、社内、業界など無意識に作り上げてしまうかもしれない制限がなければ、他に何ができるかと想像を巡らせることも役立ちます。さらに、先回りして相手の意図を汲み取るのではなく、改めて「なぜ」と問いかける姿勢を持つことも重要です。

アカウンティング入門

財務三表で見える!企業理解の新視点

財務三表の意味は? アカウンティングについての学びでは、財務三表は単なるデータの集合ではなく、それを用いて企業の業績を説明するためのツールであることを理解しました。これにより、以前は苦手と感じていた財務面について、シンプルに捉えられるようになりました。私の中には、財務三表を完璧に理解しなければならないという先入観がありましたが、実際にはその構造を理解することで、未解決の問題は調べて対応できるという考えに変わりました。また、アカウンティングは専門家だけが扱うものだと思っていましたが、さまざまな立場の人が財務状況を説明し、理解できるための汎用性のあるものという印象に変わりました。 月次報告の意義は? 月次報告については、報告者の視点や議論の適正さを考慮し、違和感があれば具体的な確認を心がけています。月次報告と年間目標の関連性を意識しつつ、現状をアカウンティングの言葉で説明できるように努めています。また、自社の財務三表の特徴を把握することで、企業体質の理解にも役立てています。1年単位に留まらず、さらに3年、5年単位で会社業績を追いかけられるようになりたいと思っています。 分析の視点は? さらに、月次報告に対しては、事業における価値提供の方法や資産活用結果という観点から、財務として意義のある分析や説明がなされているのかを常に疑問として持つ視点も大切です。財務三表やその元になるデータへの見方や解釈は、立場によって変わることを理解し、他者の意見や背景を積極的に探るよう心がけています。中長期的な財務目標に到達するための準備や課題についても、アカウンティングの視点で検討し、自社及び他社の決算報告書を読み、自分なりの解釈を築いていきたいです。

データ・アナリティクス入門

学びを深めるためのプロセス活用法

問題解決プロセスの重要性 物事の問題を解決する際には、プロセスに分けて考えることが重要です。問題解決のプロセスとして、「What→Where→Why→How」の順序で考えることで、思考を整理して進めることができます。 ギャップをどう具体化する? まず、Whatについては、あるべき姿と現状とのギャップを具体化し、定量的に明確化することが求められます。次に、Where、Why、Howについては、ロジックツリーを用いて目的に合わせた分析を行います。ここで重要なのは、ロジックツリーがMECE(Mutually Exclusive, Collectively Exhaustive)である必要があるものの、必ずしもMECEでなければならないわけではなく、目的に応じて臨機応変に使うことが求められます。 事業部の課題分析法とは? 事業部の課題については、まず現状を分解し、どこが問題でどこが成功しているのかを見極め、その中で原因を深掘りして検討します。また、プロジェクト(PRJ)の進行においては、ゴールと現実を明確にすることで全体の認識を統一し、進行を円滑にすることが重要です。 進行管理と数値化の意義 進行管理業務では、プロジェクトの目標設定及び現状を改めて数値化し、現在の問題が本当に問題であるかを再認識します。会議の進行においても、相手の目的や論点をロジックツリーを使って分解し、論点に基づいた議論を進めることが求められます。 学びのアウトプットをどう活かす? 最後に、アウトプットとして自分が学んだことを整理し、自分の言葉で言語化することで周りに共有し、「What→Where→Why→How」の思考を習慣化することが大切です。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

データ・アナリティクス入門

仮説が照らす学びと挑戦

仮説の意味は何? 仮説とは、ある論点に対する仮の答えを意味します。仮説を立てる意義としては、検証マインドを高め説得力を増すこと、関心や問題意識をより明確にすること、物事の進行スピードを早めること、そして行動の精度を向上させることが挙げられます。 複数仮説の意義は? また、仮説を考える際には、複数の仮説を同時に立てて決め打ちしないこと、そしてその仮説同士が異なる切り口で網羅的に考えられていることが重要です。さらに、フレームワークを活用することで、自分の思考の幅を広げ、複数の視点から仮説を検証する機会が得られます。この点では、各仮説の正しさそのものよりも、いくつかの異なる切り口を持つことが非常に大切です。 検証方法はどう? 仮説の検証方法としては、既存のデータを活用して確認する方法や、新たにデータを収集して比較検証する方法があります。比較のためのデータ収集においては、都合の良い情報だけに偏らないよう注意する必要があります。 営業での仮説は? また、仮説は営業の現場においても有用に活用できます。例えば、売上の進捗をマネジメントする上で、現状の売上に対して問題はどこにあるのか、原因は何か、そしてどのように解決すべきかといった点を明確にするために、問題解決の仮説は大いに役立ちます。こうした仮説をもとに施策を考え、実行し、その結果をデータをもとに定期的に分析することで、施策の軌道修正を行い、着実な成果を導くことが可能になります。 フレームワーク活用は? 最後に、従来は活用機会が少なかったフレームワーク、たとえば3C分析や4P分析を実際にどのように業務に取り入れているのか、その事例についても知見を得たいと考えています。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。
AIコーチング導線バナー

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right