デザイン思考入門

共鳴する学び、未来を拓く

多様な視点は? 受講生の皆さまの多様なアイディアや着眼点に触れることで、自身の課題への向き合い方を改める大きなきっかけとなりました。生成AIの活用事例からは、自らの業務に活かすヒントも得られ、非常に刺激を受けました。また、デザイン思考のプロセスでは、各段階での発散と収束のバランスが最終的な施策やテスト段階に大きく影響するという点が印象的でした。 課題の改善方法は? 自身の課題に対する取り組み方を見直し、ほかの受講生からの多彩なアイディアを学ぶ姿勢は非常に有益です。さらに、生成AIの業務への応用意欲や、デザイン思考の各プロセスの深い理解が、今後の成長につながると感じています。 思索の問いは? 以下の問いを自分自身に問いかけ、さらに思考を深めたいと思います. ・デザイン思考のプロセスで、効果的な発散と収束を実現するためにはどのような手法が考えられるでしょうか? ・ほかの受講生から得た学びを、具体的にどのように自身の業務に応用できますか? 他者の意見は? 他者のアイディアを参考にしながら、自分の業務にどのように反映させるか具体策を考えることが重要だと感じました。 授業の学びは? 講義を通して、以下の5点を特に意識したいと考えるようになりました。 重要な意識点は? ① 顧客のニーズや課題を深く理解するため、学んだインタビュー手法を活用し、顧客の立場から感情や期待を把握することで、解決すべきペルソナの解像度を高める。 ② チームでの業務において、ブレーンストーミングなどを積極的に取り入れ、自由な発散により多角的な解決策を模索する。 ③ 提案するアイディアを簡易的に形にまとめ、実際に試してみることで、より良いブラッシュアップの機会を確保する。 ④ ダブルダイヤモンドの考え方をもとに、継続的な改善・改良を繰り返し、顧客の反応や市場の変化に柔軟に対応する。 ⑤ 自身で商品を開発する立場ではないからこそ、異なる部門とのクロスファンクショナルな連携を重視し、情報共有を通じてより良い企画創出を目指す。 企画の目的は? 現在、志望理由書作成に関する指導提案のイベント企画に取り組んでおり、特に高等学校3年生を対象とした指導提案を予定しています。この企画では、高3生をはじめ、保護者や教員の行動や感情を詳細に把握するため、担任、生徒、保護者へのインタビューやアンケート調査などを実施する予定です。 今後の提案は? ヒアリングで得た情報は、イベントの目的やテーマを明確にした上で整理し、企画の焦点を固める材料とします。そして、解決策のアイディアはイベント企画チームでブレーンストーミングやKJ法、その他フレームワークを活用しながら、より効果的な提案へと昇華していく方針です。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

マーケティング入門

顧客ニーズを見抜く!ビジネス成功の鍵

顧客ニーズをどう把握する? 商品を何にするかを決める際に最も大切なのは、やはり顧客のニーズを把握することです。「それは当然だ」と思われるかもしれませんが、いくつか重要なポイントがあります。 まず、顧客自身がなぜその商品を購入したのか、あるいは欲しいと思ったのかを自覚していないケースが多いということを理解する必要があります。次に、ウォンツとニーズの違いを正確に理解することも重要です。ウォンツとは、ある特定のものを欲しいと思う状態で、顧客自身が自認しているため、競合による価格競争が起きやすくなります。一方、ニーズは満たされていない状態があり、それを解決したいと思っているものの、顧客自身が認識していないことが多いです。ニーズを捉えることができれば、それがビジネスチャンスにつながる可能性が高まります。 ペインポイントをどう見つける? このための手法も理解する必要があります。ウォンツを捉えるには、アンケート調査や購買データの分析が有効です。一方でニーズを捉える手法としては、顧客にインタビューを行い、様々な視点からの質問を通じて心理を掘り下げる方法や、顧客の行動を観察して商品の利用状況を見る方法があります。また、カスタマージャーニーを描くことも有効です。 事業を成功させるためには、顧客が困っているポイント、つまりペインポイントを見つけ出すことが第一歩です。しかし、それは容易ではありません。そのため、手法については理解を深め、実践の中で改善していくことが重要です。 顧客との信頼構築法とは? 顧客のペインポイントを探る手段として、定期的なコミュニケーションが欠かせません。顧客の困りごとは時の流れとともに変わっていくため、常に新しい情報をキャッチアップし、変化を把握するように努めます。 さらに、会社の強みとして柔軟に企画化できる点を活かし、見つけたペインポイントに対して企画に昇華できるものがあれば、すぐに素案を作成し、顧客に提示して反応を見ます。好反応が得られれば、迅速に実行することを繰り返していきます。 効果的なチームコラボの秘訣は? また、営業やマーケティングメンバーとの定期的なミーティングを通じて、各メンバーが顧客から引き出した困りごとをシェアします。この中で、具体的なアクションプランについてもアイデアを出し合い、すぐに実行に移していきます。 デプスインタビューの極意 最後に、インタビューのスキルを高めることも重要です。デプスインタビューは難しいものですが、それをこなすにはどの情報を広げ、どの深さで掘り下げるかといったガイドラインが必要です。このスキルは自分自身で率先して学び、その知見をメンバーに共有することでチーム全体のスキル向上につなげます。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

データ・アナリティクス入門

振り返りで気づいた仮説の力

仮説とは何か? 仮説とは、ある論点に対する仮の答え、もしくは分からない事に対する仮の答えを指します。仮説には主に「結論の仮説」と「問題解決の仮説」があります。結論の仮説はある論点に対する仮の答えであり、問題解決の仮説は問題解決のプロセスに沿ったものです。この場合、What(何が問題か)、Where(どこで問題が発生しているか)、Why(なぜ問題が起きているのか)、How(どう解決するのか)の観点で考えます。 仮説を持つことの価値とは? 仮説で考えることの意義は以下の通りです。 1. **検証マインドの向上と高まる説得力**: 仮説を持つことは検証作業とセットで動くことを意味します。 2. **関心・問題意識の向上**: 関心や問題意識のないところには仮説は生まれません。日頃から自分の仕事に関連して仮説をもつように心がけることが重要です。 3. **スピードアップ**: まず自分なりにあらゆる情報を総動員してこれがいいのではないかと仮説を持ち、テスト的に実施しながら検証する手順を踏むことで、スピーディに対応できます。 4. **行動の精度向上**: 仮説検証のサイクルを早く回すことで、それに伴う行動の精度が向上します。 データ収集の重要性 原因の仮説を立てる際には、仮説を検証するためのデータを集めます。データには既存のデータと新しいデータがあります。既存のデータとしては、自社内にあるデータ、一般公開されているデータ、パートナー企業が取得しているデータなどがあります。新しいデータとしてはアンケート(広くデータを収集)、インタビュー(狭い範囲で深く収集)があり、追加で調査が必要な箇所に絞り、新たなデータを取ることが重要です。 仮説を立てる際の注意点は? 複数の仮説を立てる際には、以下の点に注意します。 - **仮説同士に網羅性をもたせる**: 何を比較の指標とするか意図的に選択し、何を見ればよいのか、何と比較したらいいのか意図をもって考えます。 - **データ収集する際の注意点**: 誰に聞くか(意味のある対象から聞けているか)、どのように聞くか(比較するためのデータ収集を忘れない。反論を排除する情報にまで踏み込めているか)に注意します。 フレームワーク活用のすすめ 仮説を考える際には、3C(市場・顧客、競合、自社)や4P(商品、価格、場所、プロモーション)のフレームワークを活用します。また、仮説検証のスピードを上げ、仮説検証のサイクルを早く回すことも重要です。 仮説の立て方が分からない方には、仮説を考える意義や、日頃から自分の仕事に関連して仮説を持つように心がけることが有効です。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

戦略思考入門

戦略的選択で最大の成果を目指す

戦略的選択の重要性とは? 今週は「戦略的に選択する(捨てる)」というテーマについて学びました。これまで続けてきたことを「捨てる」のは誰しも避けがちですが、ビジネスにおいては重要な選択であると感じました。 捨てる際に考慮すべき要素は? 捨てる際に考慮すべき要素として、①時間当たりの利益率、②市場性、③ROI(投資対効果)に基づいて優先順位を決めることは合理的で、判断の基準として有効であると感じました。 判断基準の統一がなぜ重要? 捨てる際の留意点としては、以下の点を学びました: 1. 決断は一人で行うのではなく、複数人の視点を加えることが重要です。そのためには、判断基準を統一するための検討材料の準備が必要です。 2. 何かを捨てることで顧客の利便性が向上することがあります。これはトレードオフの考え方にリンクしており、コストリーダーシップか差別化戦略をとるかを判断し、資源配分をメリハリよく顧客ニーズに合わせて考える必要があると感じました。 3. 昔の惰性に流されないようにすることも大事です。組織改編を通じて多くの仕組みや手法を見直してきましたが、その際にメンバーから不満が出ることもありました。このため、なぜそれを実行する必要があるのかを視覚的に説明できる準備が求められます。 4. 餅は餅屋に任せるべきだと感じました。 学びをプロジェクトにどう活かす? この学びを踏まえ、以下のプロジェクトに活用できると考えています: 1. 組織の体制改編の検討: 現在の作業をフルタイムの従業員だけで行うのではなく、「捨てる」の意識を持ちたいです。惰性で実施している作業で廃止可能なものを見極め、アウトソーシングやベンダーに任せられる業務を選定する際には、作業時間、工数、および費用を考慮したいと思います。 2. 顧客満足度の向上: 製品の領域ごとに異なる課題に対してのアクションがあります。どのアクションを取るべきかをトレードオフの観点から判断し、効用を最大化するポイントを見つけたいと考えています。 組織改編の具体的ステップは? 具体的には、以下のステップを行いたいと思います: - 体制改編においては、FTE計算を基に組織体制案を作成し、新体制時の各作業の理想的な時間と工数を提案します。そして、不要な業務をリストアップする段階に進みます。 - 顧客満足度向上における課題については、必要なリソースを投入する課題とその解決策の優先順位を決定するための資料を作成し、議論を進めます。最終目標は顧客満足度の向上であり、解決策の優先順位決定においてトレードオフの観点から最も効用が高まる要因を検討することが課題です。

データ・アナリティクス入門

問題解決スキルでデジタル広告を最適化

原因分析の重要性を知る 問題解決ステップにおける原因分析(Why)、Howの立て方について学びました。 原因を探るためのポイントは次の二つです。一つ目は、結果にいたるまでのプロセスを分解し、どのプロセスに問題があるか特定すること。二つ目は、解決策を決め打ちにせず、複数の選択肢を洗い出し、それを重みづけして評価・選択することです。 総合演習で何を学ぶ? 総合演習では、問題解決プロセス全体を経験しました。この過程を通じて、「問題が発生すると、解決策から考えてしまう」「仮説めいた持論を展開する」「それらしいデータに飛びつく」という思考のクセを極力排除し、問題解決ステップに沿って検討を進める方法を学びました。 実務での学びの応用は? 出版デジタルメディアにおけるタイアップ広告販売の仕事においても、この学びを活かせる場面がいくつかあります。 まず、タイアップ広告の進行中の検証や効果測定です。例えば、PVや再生数などの指標が当初の予測よりも悪い場合、従来はコンテンツの内容にのみ着目していましたが、今後はプロセスに分解することで、原因箇所を判断できるようになります。 次に、ABテストです。記事コンテンツは校了後に修正しないのが基本ですが、タイトルやサムネイル画像などの要素はテスト形式にすることができるかもしれません。また、SNSでUPするコンテンツでもテストが可能かもしれないと感じました。 成長戦略における問題解決 また、自社メディアの成長戦略策定においても、他部署と来期の戦略を立てている最中で、問題解決ステップを基にした議論がなく、Howばかりで決め打ちの議論になりがちです。そのため、効果検証がしづらい状況でした。そこで、自分が問題解決ステップのWhat、Where、Whyを整理し、メンバーに提案してみようと思います。納得してもらえるかはわかりませんが、WhyからHowの複数の選択肢を全員で洗い出してみたいです。 次に取るべき具体的アクションは? 具体的なアクションとしては、以下の内容を計画しています。 まず、途中検証がすぐにできるよう、プロセス分解を先に作成します。また、外部サポート企業にプロセス分解を依頼する予定です。 次に、サイトとSNSでABテストにかけると効果的な項目を洗い出し、社内に提案します。これについても、どの項目を抑えるとサイト成長の観点で効果的か外部サポート企業に確認します。 最後に、自社メディアの成長戦略策定に向けて、問題解決ステップに沿って自社サイトを分析しておくことです。これには、今週予定されているミーティングに向けてGA4を可能な限り分析することも含まれます。

マーケティング入門

マーケティングの魅力を探る:日常から学ぶ旅

マーケティングの基本とは? 「マーケティング」とは、「顧客に買ってもらえる仕組み」を考えることです。これは「自社の商品の魅力を顧客にきちんと伝えること」と「顧客が自社の商品に魅力を感じてもらうこと」の両方が成り立たなければなりません。 顧客訴求の工夫をどうする? 商品が顧客に選ばれない場合、商品そのものを変えたり価格を下げるのではなく、適切なターゲット顧客にシフトチェンジしたり、商品の魅せ方(商品名やパッケージなど)の工夫で顧客に訴求することが重要です。これがマーケティングの面白さです。 顧客の真のニーズは? また、マーケティングのポイントは、顧客の真のニーズ・欲求をしっかり見極めることです。それを身につけるためには、日常的に身の回りにある商品やサービスに注意を払う癖をつけることが大切です。 旅がもたらす学びとは? 「争いの多くが自分と異なるものへの理解不足や偏見、拒絶など、多様性がないことが原因で起こる」と言われています。そのため、「旅」を通じて異文化を理解・体験することは、争いの抑制に役立ちます。私は、平和産業である「旅」を通じて、世界という壮大な学びの場で多くの人が楽しみながら世界を知り、平和について考えるきっかけを創り続けたいと考えています。 資本主義と社会貢献を両立 現在、訪日旅行の営業に従事しており、オーバーツーリズムや地方創生、震災復興といった持続可能な観光に関する課題解決に取り組んでいます。しかし、会社としては社会貢献だけでなく、売上や送客などのビジネス成果も求められます。そのため、社会貢献とビジネスを両立させ、顧客にとって魅力的なツアー商品を企画する必要があります。それには、旅行業界の現状や課題を分析し、周囲を納得させて共に行動することが求められます。 私の学習方法とは? 日々の業務がイレギュラーが多いため、休みの日にまとめて学習しています。動画を視聴し全体の流れを把握した後、何度も繰り返し視聴しながら内容を自分なりに要約・まとめることで知識を定着させています。これは、自分に最も合った学習方法です。 GLOBIS学び放題の活用 以前からGLOBIS学び放題にも加入しており、期限が決められている方が集中して取り組めます。毎月視聴する動画を計画し、学んだ内容を自社や業界に当てはめるようにしています。日常から「この商品にはどのようなマーケティング戦略があるのか」を考える習慣を持ち続けています。 新たなスキルを学ぶために 現在はGLOBIS学び放題の継続に加え、データ・アナリティクスとアカウンティングのナノ単科を受講しています。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

クリティカルシンキング入門

クリティカルシンキングで広がる視野と思考の深化

何に気づけたの? 出来ていたこと、出来ていなかったこと、修正が必要な点、新たに学んだことなどを通じ、多くの学びを得る機会となりました。クリティカルシンキングとは、フレームワークを活用して整理・分解・分析を行う思考技術と、クリティカルマインド、つまり「マインドセット」を指します。クリティカルの対象は自分自身や自分の思考に向けられるべきです。 何故問い続ける? 主張には根拠が欠かせません。それを明確かつ具体的にするために、問いかけ続ける姿勢が重要です。また、「今、答えを出すべき問い」が何であるかを明確に具体化したら、それを意識して押さえ続け、共有することが大切です。物事を俯瞰的かつ客観的に捉えるためには、「視点・視座・視野」の3つの視を意識し、思考を深める、広げる問いから始めることが必要です。さらに、「人の思考は誘導されやすい」という側面を考慮し、無意識の制約や偏りを避けるためにも、客観性とフラットな視点を意識することが求められます。 何を課題と見る? 特に仕事においては、この思考法が多様なシーンで活用できます。例えば、メールや資料作成、調査・分析、プロジェクトマネジメント、コミュニケーションなどにおいて役立ちます。顧客の課題解決においては、顧客の意図する課題や解決策が必ずしも根本的な解決に繋がるとは限りません。そのため、顧客の潜在ニーズを明らかにし、「何を課題と捉えるべきか?」から議論を始めることが重要です。Issueが明確化されたら、それを意識して押さえ続け、整理・分解・分析には学んだフレームワークを活用します。また、対策や解決策を多面的に洗い出し、それぞれの根拠を導き出すことが求められます。 伝え方はどう? 視覚的にわかりやすい資料作成も大切で、誰にでも理解しやすいように心がけます。説明のポイントは相手の立場に応じて柔軟に変えるべきです。 どう問いを考える? クリティカルシンキングに関しては、まだ完全に体得したとは言えませんが、意識的に行動できるようになってきました。例えば、注意が逸れている際に即座に対応するのではなく、一歩引いて冷静に問いを考えることを心掛けています。反復トレーニングを通じて、効率的かつ無駄なく活用できるレベルに達するために、意識を維持することが重要です。 どう知識を更新? 加えて、知的好奇心を刺激するために、積極的に読書やオンライントレーニングに取り組み、多くの知識を吸収しています。「インプット⇒アウトプット⇒フィードバック⇒振り返り」のプロセスを繰り返し、知識やスキルの更新を続けたいと考えています。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right