データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

仮説で始まる主体的成長の一歩

仮説はどこから始まる? 仮説を持つことで、対象への関心が深まると同時に、問題意識も高まるという考え方は非常に理にかなっていると感じます。仮説がない状態では、物事への関心が浅く、問題意識も十分に芽生えにくいものです。しかし、一度仮説を立てると、その正否を自ら確かめようという意欲が生まれ、自然と検証に積極的に取り組むようになります。その結果、案件に対するコミットメントが強化され、より主体的に取り組む姿勢が養われます。 改善提案はどのように? この考え方は、業務における課題抽出や改善提案の場面にも応用できると感じます。たとえば、顧客対応の効率化や新しいサービスの導入検討において、仮説を立てて検証を重ねることで、単に課題を指摘するだけでなく、解決策の妥当性を自分自身で確認しながら主体的に進めることが可能になります。

クリティカルシンキング入門

会話で広がる客観視点の世界

なぜ客観視が必要? 客観的に物事を捉えるためには、訓練が必要だと学びました。自分の思考のクセを理解するだけでなく、他者と恐れずディスカッションを行うことが、より客観的な視点を養う一助となるという新たな視点を得ることができました。一人で考える場合と比べ、会話を通じて自分の話し方や考え方の癖が見えてくるため、こうした対話の重要性を実感しました。 本当に今の方法? また、クリシンを確実に身につけるためには、まずは徹底して考え抜く習慣をつける必要があると感じました。仕事においては、直前の「やらなければならないこと」があると、つい過去の方法に頼ってしまいがちです。しかし、かつてと現状では状況が大きく異なることも多いため、本当にその方法で十分なのか、他に有効な解決策はないかと自問し続けることが大切だと考えています。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

問いの力で広がる学びの扉

「問い」をどう捉える? 「問い」にフォーカスしている点がとても印象に残りました。この「問い」を生み出すためには、物事を多角的に捉える視点が必要であると感じます。たとえば、WEEK1で学んだ内容が実際に活かされるという点から、さまざまな見方を取り入れる重要性と、それに伴う言語化のスキルも求められていると実感しました。 資料作りはどう進める? 今後、提案資料や報告資料を作成する際には、今回学んだ視点の多様性と言語化の技術を活かしたいと考えています。客観的で説得力のある資料作成には、顧客の多様な立場(経営層や現場担当者など)だけでなく、自社内のさまざまな視点も取り入れることが必要です。また、他者が作成した資料をチェックする際にも、これらの点を意識し、課題解決に役立つ情報提供ができるよう努めたいと思います。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

リーダーシップ・キャリアビジョン入門

共に育む自然なリーダーシップ

リーダーの本質はどうなる? リーダーシップは、特別な才能ではなく誰にでも備わっているものであり、状況に応じて自然に発揮されるものだと実感しました。何よりも、リーダーとなるためにはフォロワーが存在し、共通の目標を持って行動することが必須であると感じます。 方向性はどう共有する? 私自身は、まず自分が思い描くイメージをできるだけ具体的に示し、部下や同僚と同じ方向性を共有することを心がけています。その結果、皆が何をすべきかが明確になり、各自が行動に移しやすくなると考えています。 障害はどう解決する? また、共有した目標に対して生じる困難や不明点があった場合は、積極的に意見を聞くようにしています。これにより、障害となる要因を迅速に取り除き、スムーズな業務遂行につなげることができると実感しています。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

データ・アナリティクス入門

なぜから始まる問題解決の旅

なぜ問題を多角的に見る? 何か問題を見つけたとき、私はまず「なぜ」から考え始める習慣がありました。しかし、目についた問題だけにとどまらず、「何が問題か」や「どこに問題があるのか」を俯瞰的に把握することで、より適切な判断へとつながると感じています。そのため、ロジックツリーを活用し、全体を漏れなく整理する方法を取り入れることで、原因や最適な解決策を見出す意識を持つようにしています。 どう改善策を探る? また、たとえば営業利益が想定を下回っている新サービスについては、結果を細かく分解して原因を探る試みを行いたいと考えています。販促に過度な投資が行われているのか、客単価が低いのか、固定費が目標値を超えているのかなど、広い視点で状況を確認することで、改善すべき点を具体的に見つけ出すことを目指しています。

クリティカルシンキング入門

イシュー活用で未来を創る

イシューはどう見極める? 問題や課題を解決するには、まずイシューを特定することが大切だと学びました。イシューは、見る角度や考え方によって様々な切り口で設定できるため、目の前にある問題を多角的に分析し、考えうるイシューを洗い出すことが重要です。その上で、状況や環境、優先事項を踏まえ、どのイシューに注力すべきかを見極める必要があると実感しました。 直感に頼らない方法? また、チームの管理職として日々の業務で課題に直面する中、これまでは自身の経験や直感に頼った対応が多く、時としてその効果に限界があることを感じていました。今回の学びを活かし、今後はクリティカルシンキングの手法を用いて、多角的に要因を分析・洗い出し、上司や部下と議論しながら、最も効果的な解決策を選定して実践していきたいと考えています。

データ・アナリティクス入門

仮説が未来を切り拓く瞬間

仮説はどう整理する? 今まで学んだ内容をもとに、課題全体を通して「どうありたいか」や「何を解決したいのか」という視点から仮説を立てる過程を振り返ることができました。どのデータを、どう活用するかを考えながら、仮説を検証し精緻化していくストーリーは非常に有意義でした。また、目の前の問題にすぐに飛びつく癖を見直し、一旦判断を保留することで、どの判断を支える根拠が必要か改めて考える大切さを実感しました。 データはどう伝える? さらに、メンバーや上司への働きかけにおいては、自分がどうありたいかを明確に示し、その意図を支える根拠としてデータに基づいた事実を示すことで共感を得たいと考えています。今回の学びを活かし、限られた人員で10%の作業増に応えるための具体的な施策に取り組んでいきたいと思います。

データ・アナリティクス入門

知識整理で仕事のヒント発見!

再確認って何をする? 今週は、これまで学習した内容を再確認する機会となりました。改めて振り返ることで、比較の本質やプロセス(仮説)、5つの視点、3つのアプローチ、そして問題解決のステップについて整理することができました。 仕事でどう活かす? 仕事では必ず比較や問題解決が求められるため、先人の知恵であるフレームワークや考え方、問題解決のステップをうまく活用し、効率的かつ的確な分析を行いたいと考えています。また、これらの学びを部下の育成にも生かしていきたいと思いました。 知識定着は何が鍵? これまで学んできたフレームワークやステップを常に意識しながら業務に取り組むことが重要だと感じています。忘れがちな部分については、自分でまとめたメモを適宜振り返ることで、知識の定着を図っていきます。

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right