クリティカルシンキング入門

イシューの見極めで職場の問題解決を進化させる

イシューの判断はどうする? 物事の本質的な問題である「イシュー」を適切に判断することが重要であり、適切に判断しないと対処を誤ってしまうことを学びました。また、常に状況が変化するため、問いを持ち続けることが必要であることも学びました。 問題解決に活かす工夫は? 職場の部下から、社内外で発生した問題やトラブルについて相談を受ける機会が多いため、それに対する具体的な指示やアドバイス、再発防止や改善策を考える際に、今回学んだ「イシュー」の考え方を活用できると思います。 質問で状況をどう把握する? 発生した問題やトラブルの対処について相談を受けた際には、自分自身がその「イシュー」の見極めを誤らないよう、学んだことを思い出しながら考えるようにしたいと思います。また、そのためには、相談を受けた時に現在の状況を正確に理解するための質問も工夫する必要があると感じました。どのような質問をすれば正しい情報を得られるのかを意識するようにしたいと思います。

データ・アナリティクス入門

多角的仮説で切り拓く解決策

本当に原因は何? 原因を探る際は、さまざまな角度から仮説を立てることが大切です。フレームワークや対概念を利用し、多くの切り口で検討することで、真の原因に辿り着く可能性が高まります。 何が解決の鍵? 問題解決の際は、すぐに具体的な方法(How)に飛びつかず、まずは何が(What)、どこで(Where)、なぜ(Why)の各段階で十分に仮説を洗い出すことが重要です。このステップを順に踏むことで、より的確な解決策に繋げることができます。 どうして仮説広げる? 実務では、過去の経験に頼って一つの仮説に固執しがちですが、より早く問題解決を図るためには、できるだけ多くの仮説を立てる努力が求められます。日頃からMECE、3C、4P、SWOTなどのフレームワークを意識し、抜け漏れのない思考法を訓練することが有効です。 共有で強化する? また、自分だけでなくチームメンバーとも知識を共有し合うことで、組織全体の力を高め、さらなる成長へとつながります。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

デザイン思考入門

小さな声が生む大きな変化

一人の声は響く? たとえ多数の意見でなくても、たった一人の意見にも多くの人にプラスを与えられる価値があると感じます。車社会の中で疎外されがちだった自転車ユーザーが、駐輪スペースの確保を求める声は、自転車に乗らない人々にもメリットとなる点を示しながら、解決へ向けた交渉の糸口となっています。 行政はどう考える? 一方で、行政側は駐輪スペースの必要性について一定の理解は持っているものの、実際に設置に向けた行動へと移すための動機付けがまだ十分ではありません。皆が「やらねばならない」との認識を共有し、協力して動けるようにするためには、さらに説得材料を集める必要があると感じます。 小さな声は大局に? 一人の小さな声から、これまで異なる立場や気付きにくかった大切な視点を得ることも多く、その気付きが解決や改善に一歩でも繋がるよう努めています。一人だけでなく、多くの人にプラスとなることを示し、共感が行動へと変わる環境を作り上げることが大切だと思います。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

デザイン思考入門

限られ時間に咲く学びの花

どうして時間が足りない? 日々の生活の中で感じる課題は多岐にわたりますが、働く社会人としての立場から見ると、特に「時間が十分にない」ということが根本にあると感じます。このため、仕事以外の活動や用事が後回しになり、常に何かに追われているような感覚に陥るだけでなく、限られた時間で無理をしてしまい、寝不足や不規則な生活などの問題が生じています。現状では、仕事以外のタイムマネジメントやタスクマネジメントに課題を感じるものの、その解決策について今すぐ結論を出す必要はないと認識しています。 解決できなければどうする? また、定性分析を通じて課題の具体性を明らかにする取り組みの中で、「その課題が解決されなかったとしたら、どのような回避的行動に出るか?」という考え方に特に興味を引かれました。このエクササイズにより、課題が解決された場合と解決されなかった場合の両面を具体的にイメージでき、それが新たな解決方法を導く上で非常に有用な発想につながると感じました。

デザイン思考入門

共感が生む成長と挑戦

共感はどこから生まれる? デザイン思考では、人間中心の視点が重要であると認識していました。しかし、初めてグループワークを行う際、知らない方々と取り組むと、つい自分の体験を優先してしまいました。先生がおっしゃるように、まずは共感を基に課題を定義するプロセスにしっかり注意を払いたいと感じました。 学びはどう活かす? また、今回の学びは、イノベーションを生むための思考法というより、仕事やプライベートのどんな場面においても、相手への配慮や問題解決に役立つと実感しました。特に、組織のビジョンを基に自分の行動を考え、チームでプロジェクトに臨む際に、今回の内容を積極的に取り入れていきたいと考えています。さらに、9月に実施予定の若手向けの人材育成研修ではデザイン思考を活用したグループワークが予定されており、この学びをカリキュラムに反映させるつもりです。大きな視点から社会の課題解決や組織の行動変革につながる取り組みにも、積極的に関わっていきたいと思います。

データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

データ・アナリティクス入門

現状理解の大切さを知る分析の旅

問題の現状理解には何が必要? 私は、これまで「どうやって解決するか」にばかり意識が向いてしまい、問題の「現状を理解する」ための思考が不足していることに気づきました。分析には常に比較が必要であり、現状と理想との比較が重要だということを、今回の学びで強く感じました。 課題抽出と仮説立ての手順 課題を抽出し仮説を立てたあと、データを集めてさらに深く分析するという手順を大切にし、データに向き合いたいです。以前は課題解決のためのデータチェックを誤ることがありました。そのため、ロジックツリーの思考を身に付ける必要があると感じています。 ロジックツリーはどう活用する? まずは手元にあるデータの詳細な分析を行うために、ロジックツリーを具体的に図面として描いてみようと思います。その際、必要となる切り口をMECE(Mutually Exclusive, Collectively Exhaustive)に基づいて細かく分け、誤りなく課題を抽出したいです。
AIコーチング導線バナー

「解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right