データ・アナリティクス入門

数字の向こうに見えた本当の学び

数字だけで判断してる? 数字をそのまま見ると、判断を誤る危うさや怖さがあります。実態を正確に把握するためには、数字の中身に潜む意味を紐解き、大枠と詳細を行き来しながら分析する必要があります。 集約方法は適切? そのためには、数値を適切に集約して可視化することが求められます。ただし、集約の方法自体も状況に応じた判断が必要です。数字の意味を正しく読み取り、どの手法で集約すべきかを判断しなければ、誤った方向へ導いてしまうリスクがあります。 どの手法が最適? 何度も試行錯誤を重ね、どの手法が実態を正しく反映しているかを見極めることが重要です。自分が行った集約内容を比較することで、分析の精度を高めることができます。 数字の羅列で判断? 数字が羅列されるだけでは、実績、利益、投資経費といった各状態がどのようなリターンに結びつくのかが明確に見えにくくなります。これらの判断材料を集約し、分散して検討することで、より妥当な判断が可能になります。 見るべきはどこ? また、見るべきポイントを示すことは分析を行う上での基本的なマナーであり、迅速な判断を下す要因にもなります。難しい計算式に頼るのではなく、基本的にはツールやExcel、BI、AIなどを活用して分析を進める場面も多いですが、これらの使い方を根本から学び、センスを磨くことも重要です。 視覚化の工夫は? 単に数字をグラフにするのではなく、伝えたいポイントがしっかりと相手に伝わるビジュアルを作成するために、思考と工夫を重ねる必要があります。

データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

マーケティング入門

新事業のタネは顧客の声にあり

どうすれば覚えやすい? 商品のネーミングは、覚えやすくユニークで、用途がすぐに連想できるものが望ましいです。 新規事業はどう探す? 新規事業のタネを見つけるには、カスタマージャーニーを通じて顧客が抱える課題―すなわちペインポイント―をしっかり洗い出し、その課題を解決することで得られるメリット(ゲインポイント)へと昇華させることが重要です。既存事業の見直しやブラッシュアップの際にも、同様のアプローチが有効であると感じました。普段のプロモーションでは、つい商品の良い点ばかりに注力し、課題点の把握が十分でないことに気がつきました。 政策連携はどうすべき? 自治体経営の側面から見ると、域外に転出した方々へアンケート調査を実施し、なぜ転出を選んだのかといった理由を探ることで、潜在的な課題の発見が可能となります。しかし自社では、抽出したペインポイントを解決するための具体的な政策を実施することに一定のハードルがあるため、政策の根幹を担う部署との連携が不可欠です。KPIの共有や、途中経過を確認するためのプロジェクトチームの構築が、その連携を円滑に進めるポイントとなります。 合意形成はどのように? また、マーケティングのプロセスは、自部署だけでなく他部署と分担して行うことが一般的です。その際に、どのように共通認識を持ち合意形成を図っているのか、他の事例を参考にしたいと考えています。さらに、カスタマージャーニーの全体像をどのように把握して活用しているのか、その取り組みについても知見を得られればと思います。

戦略思考入門

捨てる勇気で未来を拓く

なぜ「捨てる」重要? 今回の講座では、「捨てる」という戦略的思考の重要性について学びました。限られた資源の中で何かを選ぶと、必ず何かを諦めなければならないトレードオフが生じることを理解しました。特に、資源が不足している場合や、ある要素が他の効果を打ち消す状況では、優先順位を明確にして効用を最大化する判断が求められます。 無差別曲線はどう使う? また、無差別曲線の考え方を用いることで、効用の最大化を意識した選択が可能になることも学びました。自社や個人の方向性を定めることで、何を「捨てるか」の判断基準を明確にできる点が印象的でした。 IT開発での取捨選択は? ITシステム開発の現場においては、限られた人員や予算、納期の中で最適な成果を上げるために、すべての要望を満たすことは不可能です。そのため、要件定義や機能設計の段階でユーザー価値や事業効果の高い要素に優先順位をつけ、開発リソースを集中させることが重要だと感じました。効用の最大化という視点で、最も効果的な機能や技術、プロセスを選択し、関係者との合意形成を図りながら、実行する姿勢が肝要です。 不要をどう見極め? また、「捨てる」という判断を行う際には、どの観点を重視して不要な要素を排除するかという判断基準が大切です。そこで、皆さんのご自身での「捨てる」に関する体験やエピソードをお聞かせいただければと思います。どのような観点から不要なものを見極め、選択されたのか、その具体的な事例をお伺いできれば、さらに実践に役立てられると感じました。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

クリティカルシンキング入門

未来を切り拓くクリティカルシンキングの旅

どのように過去を振り返るべきか? WEEK 1からの学習を振り返ると、断片的には思い出されるものの、見返したりライブ授業での振り返りによって多くのことを再確認できました。もう一度、おさらいとして見直しをしたいと思います。また、思考の出発点である「問い」を明確にし、問い続けることを意識的に徹底したいです。 課題を見つける勇気は持てていますか? 私はルーティン業務外の中長期視点の課題や問題について、つい後回しにしてしまう傾向があります。自分が考えやすい、考えたいことを先に考えてしまいがちなためです。ただ、こうした課題の中にこそ本質的な会社の課題が潜んでいる可能性があると思います。勇気を持ってその扉を開けてみたいと思います。 例えば、人員配置の適正化はビジネスモデルの変革にも影響する壮大なテーマかもしれません。また、海外展開強化に向けた現状課題の真因を探ったり、新規事業を模索する際にはバイアスをかけないように意識したりすることが重要だと考えます。 問いを明確にする方法は? 現状分析を試みる際にはフレームワークを使いますが、まずは問いを明確にし、一貫した問いにすることが大切です。そして、その問いについて共有するように心がけます。客観的な視点で考え、正しい日本語で文字に起こすよう意識します。相手が知りたい内容や興味を持てる資料であるかどうかも重要です。 小さな課題から何を学ぶ? 反復トレーニングの一環として、小さな課題を使ってクリティカルシンキングを体験することも続けていきたいと思います。

戦略思考入門

ROIで拓く賢い学びと選択

なぜ優先順位は? 複数の視点を持ち、優先順位を付けることの大切さを学びました。どの要素を重視し、どの部分を捨てるかを明確にすることが、効果的な判断につながると感じます。 ROIは何を示す? 限られた資源を有効活用するためには、投資対効果(ROI)を意識することが重要です。場合によっては、不要なものをあえて省くことで、顧客の利便性を高めることにもつながると理解しました。また、昔からの慣習に流されず、専門家に任せるという考え方も印象に残りました。 効用と予算の調和は? トレードオフが発生する状況では、効用の最大化を目指し、予算と効用のバランスがとれるポイントを探すことが求められます。どの要素に注力すべきかをはっきりさせ、メリハリのある資源配分を行うことが、より良い成果につながると学びました。個人や組織のメンタリティの違いを理解し、それを調整することも有効な解決策の一つだと思います。 一石二鳥の可能性は? さらに、複数の要素を同時に実現するための革新的なアプローチ(いわゆる一石二鳥の解決策)を模索し、トレードオフの壁を打破する努力が重要であると感じました。 要員配置の戦略は? 要員配置に関しては、費用対効果の高いプロジェクトに積極的にリソースを移動させる手法に注目しました。一方で、費用対効果の低いプロジェクトについては、基本的には要員育成の場として捉え、現有要員の一部を他のプロジェクトへ配置転換することを検討するというバランスの取り方が有効であると学びました。

戦略思考入門

メリットもリスクも見抜く経済戦略

規模と範囲の本質は? 今週の学びでは、事業経済性の仕組みをしっかり理解することの重要性を改めて感じました。規模の経済性は生産量を増やすことでコストが下がるというメリットがある一方、過度な拡大により在庫や固定費が増加し、逆に「規模の不経済」を招く危険性があることが分かりました。同様に、範囲の経済性は資源を共有することで業務の効率化が図れる反面、調整に時間や労力がかかりすぎると、期待される効果が得られなくなる可能性があります。また、ネットワークの経済性は利用者が増えるほどその価値を高める特徴がありますが、品質低下や無理な拡大がマイナスに働く場面もあると感じました。 戦略策定の鍵は? こうしたメリットとリスクを踏まえ、固定費や変動費の構造、さらには市場の状況を正確に把握することが、適切な戦略を練る上で欠かせないと実感しました。事業計画を策定する際には、どの経済性を活かすかを明確にし、固定費と変動費のバランスを綿密に分析することで、過剰投資や業務の複雑化を防ぐ判断基準を共有していく必要があると考えています。 固定観念を疑う? また、習熟効果にも限界があるため、既存の方法に固執せず、新たなアプローチや改善策を常に模索する姿勢が求められます。今後は、効率と柔軟性のバランスを取りながら、組織全体で価値を高める仕組みを進化させるために、事業経済性の視点をより一層活かしていきたいと思います。事業経済性の観点から、過去に具体的なリスクが顕在化したケースや、効果的な打ち手があれば、ぜひお伺いできればと思います。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。
AIコーチング導線バナー

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right