クリティカルシンキング入門

心に響くスライドの秘訣

スライドの意図は? グラフとメッセージが連動するスライド作成のプロセスや考え方が非常に印象的でした。通常、スライドはどうしても作成者の主観が反映されがちですが、各ページのメッセージと目的に注目し、聞き手にスムーズに伝わるための多角的な準備や第三者目線を意識することの重要性を再認識しました。 ルーチン作業の意味は? 業務においては、スライド作成やメールでのアナウンスといったルーチンワークが多くあります。特にスライド制作では、結論と背景、データやグラフ、仮説の考察など、各局面で伝えたい内容を聞き手が自然に受け入れられるよう努めたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

データ・アナリティクス入門

疑問とメモから生まれる成長

売れなかった理由は? 営業の現場で長年経験を積むと、なぜ今日売れなかったのか、何が顧客に対して良くなかったのかといった疑問が浮かぶことが多くなります。こうした考察をそのままメモに記録することで、問題意識を持ち、仮説思考へと展開できると感じています。一方で、十分に検証できていない点が自分にとっての課題であるとも思いました。 検証と成長の道は? 日々の気づきをメモし、AIなどのツールを活用して要点を整理する。そこから見えてくる仮説に基づき、1ヶ月、2週間、あるいは毎日という期間で検証のスピードを上げ、実践していきたいと考えています。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

データ・アナリティクス入門

仮説で切り拓く実務の未来

定量分析の注意点は? 定量分析を実施する際に注意すべき5つのポイントについて学び、その重要性を実感しました。また、分析前の仮説の立て方がその後の結果に大きな影響を与えることから、仮説設定も慎重に行う必要があると感じました。 学びを実務に生かす? 学んだ知識は、長期的な実績変動の振り返りや今後の活動プランの策定など、実務での活用が期待できると感じています。具体的には、過去の振り返りに定量分析を行い、今後のプラン立案の際は仮説を設定した上で、必要に応じて再度分析を実施するというアクションプランのイメージが明確になりました。

データ・アナリティクス入門

目的と仮説で描く成功戦略

目的はどう設定? これまでの学習を振り返り、分析作業に入る前に目的と仮説を立てるプロセスがいかに重要かを再認識しました。また、問題解決に向けて「What、Where、Why、How」の4ステップに沿って進める手法が印象的でした。 業務にどう生かす? 普段の業務においても、まずは問題解決のストーリーをしっかりと組み立て、その上で分析を進めることを意識して取り組みたいと考えています。今後は、各種フレームワークを活用しながら論理的な思考力の向上に努め、より迅速に多くの施策のPDCAサイクルを回していくことを目指します。

データ・アナリティクス入門

仲間と共に広がる発見の輪

異なる視点になぜ注目? グループワークを通して、自分では気付かなかった切り口や別の視点からの意見を得ることができ、その重要性を実感しました。一人で考えるよりも、多角的なアプローチで知見を広げることが大切だと感じています。 多角的整理の意義は? また、個人で企画や分析を進める際には、フレームワークを活用し、抜け漏れなく複数の視点から情報を整理することを意識したいと思います。特定の仮説に固執せず、他部署の意見や異なる分野の知見を取り入れることで、より幅広い視野に立った判断ができるように努めたいと考えています。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。

データ・アナリティクス入門

代表値だけじゃ見えない発見

分析の誤りに気づく? データを分析する際、手法に誤りがあると仮説さえも誤ってしまうことを実感しました。代表値だけに頼るのではなく、散らばりなど他の視点にも注目し、分析や加工の方法の知識を豊富に持っておくことの重要性を学びました。 新発見の秘訣は? 業務においては、従来の方法を踏襲することが多い中でも、新たな発見や提案を生むためにはアプローチを変えることが鍵だと感じています。数字の見方一つで、これまで気付かなかった視点や発見があることに気づかされました。

データ・アナリティクス入門

疑問から始まる探究ストーリー

どう仮説は組み立てる? 仮説を立てる際には、さまざまな視点、すなわち異なる背景や経験を持つ人々からの意見が必要であり、MECEな仮説を構築する上で重要であることを理解しました。また、日常業務で自社や自部門の課題に目を向け、そこでの仮説立案を習慣化することの大切さも認識しています。 なぜ現象を疑う? そのため、業務の中で起こる現象やデータに対して「なぜこのようになるのだろう?」と疑問を持ち、一歩踏み込んで考察する姿勢を身につけたいと感じています。

データ・アナリティクス入門

仮説の違いが導く気づき

仮説の違いは何? 初めは、仮説を検討する際に、結論の仮説と問題解決の仮説の違いを深く考えずに検証していたことに気づかされました。両者の違いを意識することで、より豊かな気づきが得られる可能性があると感じました。 新たな視点は何? 次週以降は、仮説思考をさらに学びながら、現在取り組んでいる業務で提示した仮説以外の視点も模索し、問題解決プロセスを意識して進めていきたいと考えています。

クリティカルシンキング入門

課題解決のためのイシュー設定とその意義

イシューの設定は何が重要? イシューを見極めることの重要性を学びました。まず、何を解くべきイシューとして設定するのかを考えることが必要です。そして、そのイシューに対しての主張や根拠をセットにすることが重要です。このためには、ロジックツリーを用いて抜け漏れなくダブりなく考えることや、データを適切な形で扱うことが求められます。 提案時に

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right