データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

アカウンティング入門

BS/PLで解く!自社資金の見直し術

B/SとP/Lの関連性は? B/Sを読み解くことで、P/Lとの関連性や資産の使い道、必要な資金調達について理解が深まりました。特に、業種によってB/Sの内訳が大きく異なる点を学びました。これにより、各企業の状況に応じた資金の活用方法や調達方法について理解を深めることができました。 どのように資金を活用する? 自分の会社における資金の使い道や集め方を、B/SとP/Lの関連性を意識しながらしっかりと理解したいと思います。その上で、事業のお金の使い道にどのような問題があるのかを考えてみたいです。特に、過去の経年変化や他社との比較を通じて、自社の強みや弱みを知る手がかりにしたいです。 経年変化の確認方法は? まずは、過去3年程度の自社のB/SとP/Lの経年変化を確認してみます。傾向がつかめなければ、さらに遡って数字の変化点や傾向を探ります。そして、現時点での自社の経営戦略と照らし合わせながら、自分の業務の立ち位置を再確認したいと考えています。

アカウンティング入門

B/S×P/Lで発見!企業の真実

財務諸表の違いは? ビジネスモデルの違いが、貸借対照表(B/S)と損益計算書(P/L)にどのように表れているかを、よく知っている企業同士の比較を通じて、非常に身近に感じることができました。 利益処理の仕組みは? また、言葉の説明において、P/Lの当期純利益がB/Sでは利益剰余金や内部留保として組み込まれている点が、投資家目線で預けたお金がどれだけ増えたかという表現とともに、分かりやすく伝えられていました。さらに、減価償却費については、単に価値が減少するのではなく、使用料として捉えることで費用化が自然に理解できると感じ、社内で説明する際の良いヒントとなりました。 演習でどう確認する? 演習形式では、ビジネスモデルの検討を出発点に、実際の企業の財務諸表を用いてB/SとP/Lの違いを確認する方法が取り入れられています。さらに、流動と固定の違いにも着目し、安全性の観点からの分析も行うことで、より実践的な理解が深まる内容となっています。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

データ・アナリティクス入門

みんなで検証!次の一手へ

一方的打ち手はどう? ABテストの学習を通じ、これまで仮説に基づいて一方的に打ち手を実施してきた方法では不十分であると痛感しました。打ち手をただ試すだけでなく、条件を統一して比較することの重要性を実感し、現行の業務プロセスに問題があると感じるようになりました。 複数打ち手の検証は? また、課題に対しては通常一つの打ち手で対応しており、忙しさの中で次々と新たな打ち手を試す状態になっていました。今後は複数の打ち手を検討し、ABテストの考え方を取り入れたうえで、同一条件下でどちらが効果的かを慎重に比較・検証していきたいと考えています。 多角的視点の探求は? さらに、毎週の採用状況確認のミーティングでは、複数の打ち手を提案することで、先週までの分析手法も組み合わせながら多角的な視点から糸口を探っていく予定です。これを足掛かりに、次のステップに進むための具体的なアクションを模索し、ABテストの実施と継続的な検証を行っていくつもりです。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

データ・アナリティクス入門

先入観ゼロで切り拓く未来

授業で得た発見は? ライブ授業での総合演習を通じて、これまでの座学での学びが実際のビジネスの現場でどのように活かされるかを具体的に理解することができました。データから全体のストーリーを組み立てる際、まず先入観を捨て、グラフ化などの具体的な作業に取り組むことで、新たな視点や発見があると実感しました。また、導かれた仮説に対する検証方法を事例を交えながら学ぶことで、手を動かすことの重要性を再認識しました。こうした日々の実践が、確かなスキル習得につながると感じています。 原価で何が変わる? 目標原価と実際原価の比較においては、まず全てのデータを要素ごとに分解し、どの項目で大きな差異が生じているかを把握します。その上で、差異が大きい項目について原因を仮説立てし、その仮説が正しい場合にどのような改善で原価が削減できるかを考えます。さらに、検証方法(=解決策)を具体的に提示することで、工場全体のコスト削減に貢献できると考えています。
AIコーチング導線バナー

「比較 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right