クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

クリティカルシンキング入門

問題を解く力を手に入れる方法

どう問いを整理する? 問いの立て方が非常にわかりやすくなりました。日常生活の中で何かしらの問題を感じているものの、それを言語化することが難しいと感じていたため、ぜひこのスキルを取り入れたいと考えています。そのためには、まずゴールを明確にし、それに必要な情報の収集と、その情報の分析・解釈が重要だと感じました。 多角的視点は? 特に私はヘルスケア業界に関わっているため、クライアントや医療従事者、患者さんといった様々な視点を持ちつつ、社会全体の医療制度についても考慮することが必要です。 会議の目的は? 部署の会議においては、目的とゴールを明確に設定することが大切です。参加者が何を決めたいのか、何を知りたいのかを考え、そのための目的やゴールを決めていきたいと思います。 どう学びを活かす? また、研修においては、その研修をどのような目的で行うのかをしっかりと考え、目的を丁寧に設定する必要があります。新たな事業創出に際しても、まずは問題のイシューからスタートし、そこから外れないように他者と共有しながら課題解決を図りたいです。常に「それって問いは何なのか?」と自問し続ける姿勢を持ち続けたいと思います。 説明の基本は? さらに、自分が何かを説明するときには、まず「どんな問いに答える説明なのか」という前提条件を提示してからプレゼンテーションを始めることが散らばりを防ぐ有効な方法だと考えています。 資料をどう見直す? 今後、これまでに作成してきた資料などについても、これらの学びを踏まえた上で見直しを行いたいと思います。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

戦略思考入門

戦略の視点拡大で見える新たな道

広い視点で戦略を考えるには? 戦略を考える際には、自分の得意な視点に偏らないように、広い視点で考えることが重要です。特に、戦略を深く考えるためには、フレームワークを活用することが有効です。ただし、PEST、3C、SWOTの使い方の違いについてはまだ完全に理解が及んでいない部分があります。 フレームワークの活用事例は? フレームワークを理解する一環として、これまで担当してきた社内サステナビリティコミュニケーションのケースを考えてみます。SWOT分析では、OT(PEST分析)を行った後に、3C分析を活用しました。この取り組みの目的は、従業員のサステナビリティに対する理解を促進し、行動を変容させることです。 SWOT分析の結果、以下の点が明らかになりました。 - S: 研修やeラーニングが実施されており、従業員の理解度は概ね高い。 - W: しかし、これらは研修やeラーニングの手段に留まっており、従業員の半数に情報が行き渡らず、行動変容には繋がっていません。また、SDGsの認知度も低い状況です。 - O: 推測としては、オウンドメディアの活用が増加し、さらに共創活動が加速する可能性があります。 - T: 同時に、心理的安全性の高い企業が増えることが脅威として考えられます。 チームでの戦略策定の重要性 実際の業務においては、より具体的かつ深い分析が必要です。一人の視点に頼るのではなく、チームの視点や意見を積極的に取り入れ、妥当な戦略を策定していくことが大切だと考えています。行動として、戦略策定を4月より開始しています。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

クリティカルシンキング入門

直感から根拠へ!数字が切り拓く学び

Bリーグの常識を探る? ライブ講義でBリーグの勝敗表を見せられたとき、私はBリーグの知識がなかったため、勝敗表の情報が頭に入らず、どのように打ち手を考えればよいのか大変困惑しました。しかし、その後の分析プロセスを通して、知らない分野でも問題点を明確に特定できることを学びました。同時に、日常的に経験と勘に頼っている自分に気付かされ、経験や勘を基にした仮説を尊重しつつも、説明責任を果たす根拠を示す重要性を再認識しました。 業績から何を学ぶ? また、マクドナルドの業績と取り組みは、問題点を分析し打ち手を考えるモデルとして大変参考になりました。売上の構造のどこに着手すべきかをしっかりとターゲットを定め、そこに集中して対策を講じる姿勢を、自分が担当する組織にも取り入れていきたいと感じました。 数字はどう読む? さらに、数字が示される際には、提供されている目的を意識しながら慎重に分析すること、今期末に自身が設定された業績目標についても改めて分析すること、そして顧客企業の中期経営計画に目を通すことの大切さを学びました。 分析で見える未来? 最初は、問題分析や提案という明確なシーンでうまく論理や根拠を示せず、悩んでいたために受講を決意しました。しかし、日頃提供される様々なデータに対して何のアクションも起こせなかった自分に気付き、問いを立てたり数字を活用して分析する意識を持つことの重要性を痛感しました。これまでは、売上の目標があるにもかかわらず、十分な分析を行わずに漠然としたアクションプランを作成していたと感じています。

クリティカルシンキング入門

課題を見極め、戦略を描く

なぜ分析が必要? 今週の学習では、ケースを通じて課題を特定し、解決策を導くための分析の流れや、グラフによる可視化の方法について考えることができました。特に、「課題解決に向けて、どの分析対象を選び、どのように可視化するか」を具体的に把握し、言語化・整理する難しさを強く実感しました。一見シンプルに見える分析やグラフ作成にも、明確な目的と意図が求められるため、「なぜそのデータを選んだのか」「なぜその形式で示したのか」を一つひとつ理由づけることが、説得力のある資料作成や意思決定支援へ繋がると考えています。 実践はどのように? これまで業務課題を解決する際に、「イシューの特定と分解」や「課題ごとの解決策の立案」、そして実現可能かつ効果的な施策の選定と実行というプロセスに十分に向き合えていなかったと感じています。現在、戦略立案の担当として自社の施策の検討・実行が求められる中、まずは適切なイシューを見極め、正確に分解した上で、実行可能性と効果を見据えた施策に落とし込む一連の流れを、今後より意識的に実践していきたいと思います。 思考力をどう鍛える? 今回学んだクリティカルシンキングの基礎を業務の中で意識的に取り入れることが、学びを深めスキルの定着に不可欠であると実感しました。入門編として体系的に学ぶ機会を得たことで、今後は書籍なども活用しながら継続的な学習に取り組み、クリティカルシンキングの実践力をさらに高めていきたいと考えています。業務においてもこの思考法を取り入れ、より良い意思決定や戦略立案に貢献できるよう努めていきます。

データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

データ・アナリティクス入門

データ分析で未来を読む: 大学教育の向上指南

データ分析で重要なのは何か? データ分析を行う際には、事実(ファクト)に基づくことはもちろん重要ですが、比較の視点も非常に重要だと学びました。また、見えている事実から見えない事実を推測し考察することも大切です。 分析目的をどう設定する? データ分析の目的を最初にじっくり考えることが重要だと感じました。目的が明確であるならば、そのための準備や材料となるデータも自ずと見えてきます。 上記の内容を自分でしっかり把握した上で、上司や部下に理解してもらうためにどのようにデータを見せるか、プレゼンの仕方も重要です。 大学データをどう活用する? 私は大学に勤務しているため、大学内のさまざまなデータを分析に活用したいと考えています。具体的には、以下のテーマに取り組みたいです: - 入試成績と入学後の成績(GPA)の相関分析 - 入学後の学生生活と卒業時アンケート回答(大学に対する満足度)の相関 - 上記が国籍によってどのような差異があるか - これらのデータをもとに、大学全体として学生に提供する教育やサービスをどう向上させるか 学生の実態をどう把握する? 一例として、学生生活と満足度の相関を探るために、現在の資料を見直し、学生生活の実態を把握するための質問や指標、卒業時のアンケート内容をより充実させたいと考えています。現在のデータをより細かく見ることで、職員である私たちにも見えていない学生の実態があるのではないかと考えています。 さらに、「比較が大事」という視点を持ち、他大学の情報も参考にしたいと考えています。

データ・アナリティクス入門

目的と比較で切り拓く新たな洞察

分析の目的は? 今週の学習では、分析の本質が「比較」にあることがとても印象に残りました。分析を始める際は、まず「何を明らかにしたいのか」という目的を明確に定め、その目的に沿って「何と何を比較するのか」を考える必要があると学びました。以前は、目に見える数値や要素をそのまま眺めるだけで分析を行ってしまい、十分な示唆が得られていなかったと気づきました。目的に立ち返り、目の前にない要素も含めた比較を行うことで、初めて意味のある洞察が得られるのだと理解しました。 改善点はどこ? 今回の学びは、GA4を活用した社内サイトの分析や、ページ改善、制作判断などの現場で役立つと考えています。具体的には、同じ目的を持つページ同士を比較しながら、閲覧数、流入元、離脱状況などのデータをもとに、どの部分に改善の余地があるのかを判断する手法が特に有用だと思いました。 目的整理はどう? 今後は、GA4の数値を目にする際に、まず「今回の分析の目的は何か」を整理し、その目的を明らかにするために「何と何を比較すべきか」を先に決めてからデータに目を通すよう意識したいと思います。また、現場からの制作依頼に対しても、既存のページとの比較を行い、対応の優先順位や妥当性をデータをもとに説明できるよう努めたいと考えています。 目的不明な時は? 一方で、実務の中では目的がはっきりしない状態で分析や施策検討を求められることも多いと感じています。そのような場合、皆さんはどのようにして目的を整理し、分析の着地点を見出しているのか、ぜひお伺いしたいです。
AIコーチング導線バナー

「分析 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right