データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

マーケティング入門

市場を掘り起こす新発見と戦略

ポジショニングはどう? 「誰に売るか?」という問いに対する答えをどのように構築するかを学びました。ポジショニングによって、特定のニーズを持つ消費者に刺さる商品を生み出し、埋もれていた市場を掘り起こすことができるというのは新たな発見でした。また、同じ商品であってもコンテクストが変わることで、新たな価値を新たなターゲットに提案することができるという点も大きな学びでした。多くの最新技術が軍事目的から生まれたことがありますが、使用シーンを変えることで、生活の利便性を高めたり課題を解決したりする技術に変わることも一例と考えられます。しかし、ポジショニングとターゲティングの違いについてはまだ自分の中で明確に理解できていない部分がありました。 セグメントの再検証は? 編成プランを考える際にはまず、ユーザーをどのような軸でセグメンテーションするか考え直す必要があります。性別や年齢といったセグメントが本当にコンテンツ消費に合っているのかを再検証したいと思います。その上で、各セグメントをターゲティングできる企画を持っているのか確認してみたいと考えています。加えて、韓国ドラマコンテンツがなぜこれほどヒットするのか、その消費者の正確な属性(年齢や性別以外の要因)を分析し、韓国ドラマファン層をどう取り込むかについて考えてみたいです。 実行ステップは? 具体的には、志向性でのセグメントが可能かエンジニアや戦略チームに相談したり、消費者インサイト調査チームと協力して志向性別に調査が可能かを検討します。そして、ポジショニングマップを作成し、業界での自社のポジションを把握するとともに、消費者から見た自社のポジションを確認することを目指します。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

クリティカルシンキング入門

業務に役立つクリティカルシンキングの実践

目標に近づくには? 全体の振り返りを行ったことで、改めてWeek1の時点で描いていたゴールに近づくために、具体的にどう行動すればよいかを考えることができました。 悩みをどう解決する? 当初、私はお客様の行動分析をするうえで、課題に対する仮説の立て方や、正しい判断をするための具体的な方法が分からないという悩みがありました。しかし、クリティカルシンキングで学んだ自問自答や分解の手法を反復実践していくことで、今後はこの悩みを解決につなげられると思いました。 学びをどう活用する? 次のような業務に学びを活用したいと思います。 - 個人目標設定 - 企画や改善業務の推進(特にゴールを具体化する際) - お客様アンケートなどの行動分析 - 資料・コンテンツ作成 - 他部門や他社への協力要請(コミュニケーション面) 具体的な実行プランは? 自身の業務では、来期の個人の目標設定をする時期にあるため、以下の点を実践し、成果を上げられるように取り組みたいと思います。 - 課題解決の目的を自問自答しながら考える - 事実をもれなくダブりなく分解し、客観的に判断する - 抽象的な情報を具体化し、ポイントを絞って課題解決する - 相手の常識を覆すような情報の伝え方をする - 目的がぶれないように共有し、一貫して押さえ続ける 分析に効果的な方法とは? お客様アンケートなどの結果を分析する際には、イシューを考え、分解する手法を実践したいと思います。実際にやってみると、とても時間がかかることが分かりましたが、客観性を担保することで、効果的な課題解決につながることを知りましたので、今後も業務で継続していきたいと思います。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

クリティカルシンキング入門

直感を超えたビジネス戦略の視点

「3つの視」で何を感じる? 今週の学習で特に印象に残ったことがあります。それは、「3つの視」、常に目的を意識すること、そして自他に思考の癖があることです。普段からロジカルに物事を考えるよう心がけていますが、時には直感で判断することもあります。直感が間違っているわけではありませんが、自分自身の経験に基づいて判断していることは確かです。しかし、新しい立場や状況では過去の経験が生かせない場合もあり、そうした指摘を受けることが増えてきました。このため、改めて「3つの視」を意識することが重要だと感じました。 整理不足はどこだ? 自分が直感的に考え、整理ができていない箇所がないか確認すること。そして、整理する目的を明確にしたり、相手の言動の背景を考えたりすることで、思考の枠を取り外すことができます。それにより、より幅広くクリティカルな提案が可能になると考えています。 分析の視点は何? 事業企画として部門の将来計画を立てる際、まずは既存事業の強みや弱みの分析が必要です。この分析にあたっては、フレームワークを活用し、「視点・視座・視野」が網羅されているかを意識したいと思います。各事業部長とディスカッションを行う際は、彼らの経験豊富な議論をどう位置付けるかを意識し、相手の考えを整理し理解するのに役立てたいです。 将来計画はどうする? まずは、自分自身が事業分析を行う際に「3つの視」をしっかりと意識したいと思います。今月中に部門の将来計画のプロットを作成する必要がありますが、これをフレームワークを使って抜け漏れのないように作成し、議論のたたき台として使えるレベルまで高めていきたいです。

戦略思考入門

目的意識を持つことで得た成長と戦略

目的意識の重要性を再認識 目的意識を持って何事にもあたることの重要性を再認識しました。フレームワークや学んだ理論はあくまで手段であり、目的意識を持って本質を捉える視点が重要です。ただやみくもにフレームワークを活用するのではなく、答えのない今のような時代だからこそ、仮説思考・仮説検証の位置づけで、今後も戦略的な思考を活用したいと考えています。 サプライヤー戦略に活用できる? 自らの業務においては、例えばサプライヤー戦略にフレームワークを活用することが考えられます。今後、どのようなサプライヤーと開発していくかという課題に対しては、SWOT分析を用いて強みを活かし、弱みを相互補完し合えるサプライヤーと共同開発するべきです。このような視点で、サプライヤーの強み弱みも仮説を持って進めることが重要です。 キャリアビジョンはどう更新? さらに、自らのキャリアビジョンの更新にもフレームワークを活用できると学びました。社会から需要のある状態を維持するためには、自分の強み・弱みを再検討し、今後どのようなスキルを身につけるべきかを考えていきたいと思います。 具体的な取り組みは? 具体的には、以下のような取り組みを行いたいです。 ・技術戦略やサプライヤー戦略など、自らの業務の中でフレームワークを活用する。 ・テーマの開発において、1〜2年ごとに振り返りを行い、辿った道が正しかったのか、どのような障害があったのかを考える。 ・思考を書き出し、言語化・可視化してアウトプットする。 ・これらをチームや上司に提案し、フィードバックをもらってブラッシュアップする。 ・学んだことを意識して定期的に振り返る。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

「分析 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right