データ・アナリティクス入門

試行錯誤が未来を拓く

プロセスはどう進む? 問題解決のプロセスでは、目の前の事象に飛びつかず、複数の選択肢を用意してテストを行いながら、仮説検証を繰り返すことが大切だと感じました。その過程で根拠を持って絞り込みを進めることが必要です。 分析は何を示す? また、データを収集して分析するアプローチも重要です。仮説を試しながら同時にデータの収集を進め、より良い解決方法を探ることが求められます。今の時代は動きが早いため、あれこれ考えすぎるよりも、実際に動きながら考え、必要に応じて迅速に修正していく体制が不可欠と感じました。 運営支援はどう変わる? さらに、コミュニティ運営サポートにおいては、データ分析の手法が多岐に渡ります。特に受講生の満足度についての調査を通して、彼らがどのような興味や関心を持っているのかを理解し、退会率を抑えるための施策を検討する必要があります。そのためには、ABテストなどを用いて実際の反応を確かめながら、求められているサービスを提供していくことが欠かせないと感じました。

データ・アナリティクス入門

仮説で切り拓く課題解決の道

実践的な手法は? フレームワークを活用して問題解決に取り組む重要性を再認識しました。かねてから仮説を立てる意識はありましたが、3Cや4Pといったツールを具体的に活用する方法を学んだことで、より実践的なアプローチが可能になったと感じています。 仮説の違いは? また、問題解決の仮説と結論の仮説の違いや、過去・現在・未来といった時間軸での仮説の切り口についても学びました。これらの考え方を今後のフレームワーク活用に組み合わせることで、より柔軟かつ具体的に問題に対応できると期待しています。 地域課題の対策は? 日常業務においては、無意識のうちに問題解決の仮説と結論の仮説を使い分けながら、地域ごとの課題や効果的な解決策を検討してきました。特に、地域が抱える課題に対して多角的な打ち手を検討する際には、課題解決の基本となる仮説思考が大いに役立っています。一方、他地域の成功事例を取り入れる場合などにおいては、結論の仮説を意識することで、より具体的な方向性が見えやすくなりました。

マーケティング入門

自分も体験!新たな学びの扉

体験価値の必要性は? ある事例を通して、体験価値の向上がいかに重要かを実感しました。直近では商品の値上げが避けられない状況もありますが、値上げ後も購入してもらうためには体験価値の向上が不可欠です。これにより、他の商品との差別化が図られるとともに、環境配慮などの取り組みも情緒的な価値として受け入れられる可能性があると理解しました。 効率的アプローチ法は? 体験価値を高める方法について考える中で、顧客と直接会えるイベントは工数がかかる割にアプローチできる人数が限られていることに課題を感じています。しかし、今回の学習でその重要性を再認識し、より多くの人に効率的にアプローチする手法を模索する必要があると考えています。 企画立案の参考点は? また、自分の企画を立案する参考として、さまざまな企業が実施しているイベントやサブスクリプションサービスを実際に体験し、消費者視点からその魅力や改善点を考察することで、体験価値をどのように高められるかを探求していきたいと思いました。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

ロジックツリーで拓く課題解決

正常と理想は何が違う? 正常なあるべき姿とのギャップを解消するだけでなく、現在の正常な状態からありたい姿へのギャップを埋めること自体もひとつの問題解決だという考え方は非常に印象に残りました。 ロジックツリーはどう使う? また、ロジックツリーという手法について学び、その分解方法に層別分解と変数分解があることを理解できた点も大きな収穫でした。MECEの原則を意識することで、分析において情報の漏れや重複を防ぎ、ビジネスチャンスを逃さないための重要性を再認識しました。 受け手は誰に焦点か? さらに、臨床検査サービスの受け手は患者だけでなく、医師やその他の医療スタッフなど多岐にわたるため、どの受け手に焦点を当てるかを考慮する際にロジックツリーが有効に活用できると感じました。実際、臨床検査のプロセス改善においては、層別分解を用いて「人」に関する問題と「設備」に関する問題に分けて検討するという具体的なアプローチが示唆されており、実務の現場でも役立つと実感しました。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

戦略思考入門

実例で磨く戦略思考のススメ

実例で理解が深まる? 3C分析やSWOT分析については、以前から意識していたつもりでしたが、実例の解説が非常に分かりやすく、理解がより整理できたように感じました。 初めての分析体験は? バリューチェーン分析に関しても、従来は言葉としては知っていたものの、具体的な分析手法としての活用方法は今回初めて学びました。事例が具体的で参考になったため、今後の業務などに積極的に活用していきたいと思います。 後進育成と戦略見直しは? また、後進の幹部候補それぞれに3C分析を行ってもらい、自身の強みと弱みを把握した上で、企業活動のどの部分に貢献できるかを考えてもらう取り組みを計画しています。さらに、自社で行っている製造業向けのERPパッケージ導入サービスにおいて、最近、競合他社が低価格設定で攻勢を強めている状況を受け、マネージャー以上で3C分析やSWOT分析の見直しを行うとともに、新たにバリューチェーン分析にも取り組み、提案内容に反映させるつもりです。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

「方法 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right