クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

戦略思考入門

知識から行動へ、戦略の軌跡

戦略の基本はどう? 戦略の根本を学び、最短かつ最速でゴールへ到達するための考え方を身につけました。とりあえず行動を起こすのではなく、実際に取り組むかどうかを判断するため、ビジネスフレームワークを用いて戦略を練る重要性を理解しました。 実践で何が掴める? また、「分かる」状態から「できる」状態へと変えるプロセスについて、さまざまな角度から学ぶことができました。知識を具体的な行動に結びつける方法も、実践を通して体得しました。 集客戦略はどうだ? この学びは、クライアント向けに集客効果のあるイベントを企画立案・運営する際に非常に役立ちます。たとえば、企画の際に差別化や独自性、実行すべきか否か、顧客層の明確化やニーズの分析など、様々な視点を整理する一助となりました。 差別化の秘訣は? 具体的には、依頼された手作りのマルシェ企画運営において、ターゲット、イベント内容、キャッチコピーなど類似した要素が多い中で、どのように差別化を図るかを検討する際、フレームワークを活用して全体を可視化し、論理的に整理する手法を実践しました。

データ・アナリティクス入門

ロジックツリーで問題解決!私の成功体験

問題解決のプロセスをどう進める? 問題解決のプロセスは、WHAT・WHERE・WHY・HOWの順で考えていくことが重要です。特に、WHERE・WHY・HOWを考える際にはロジックツリーを活用してMECEに分解することが有効です。分解の方法には層別分解と変数分解の二つがあります。 キャッシュフロー改善の手法は? 事業の課題に対する対策を検討する際、この手法は非常に役立ちます。例えば、「キャッシュを黒字化したい」という課題に対して問題の原因を特定することができます。ロジックツリーを用いて、営業キャッシュフローを改善するのか、投資キャッシュフローを改善するのかといった視点や、どの製品が特に原因となっているのかを特定することができると考えました。 過去の実績から何を学ぶ? キャッシュ改善(WHAT)という視点において、まずは過去の実績からどの項目に特に原因があるのかを探り、特定の製品や項目に対して大きな変化がある部分を特定したいと思いました(WHERE)。その上で、それが起きている原因を特定し、対策について検討する計画です。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

データ・アナリティクス入門

数字と発想が織り成す学び

目的は何のため? 分析は、目的を明確にして「何のために行うのか」を意識しながらデータを取り出す必要があります。単にデータを抽出するだけでなく、複数の対象を同じ尺度で比較し、具体的な数値を導き出すことが重要です。 愛の価値は見つかる? また、「愛の値段」の算出方法は特に面白く、分析においてどの切り口や観点で取り組むかを工夫することの大切さを実感しました。普段あまり使用しない横棒グラフも、要素間の比較を行う際に試してみたいと感じています。 定量データは説得力? 加えて、数値化された定量データは説得力があり、誰にでも伝わるため、曖昧な点もきちんと数値化する習慣を身につけることが求められます。こうした分析手法は、得意先との商談、社内会議資料、さらには年度方針や計画の戦略立案など、さまざまな場面で活用できると感じています。 新たな視点を得る? 講義中の問いに対する回答を通じ、自分では気づかなかった多くの視点を知ることができました。その発想や観点を今後も取り入れながら、さらに深い分析に取り組んでいきたいと思います。

戦略思考入門

フレームワークが拓く現場の知恵

フレームワークの意義は? 3CやSWOTといったフレームワークは、これまではマーケティングや営業、経営戦略の分野に限られると考えていました。しかし、実際に自分の業務に照らし合わせてみると、具体的な活用方法が見えてきたと実感しています。 運営方式の見直しは? 現在、私は自動車メーカーのサービス技術大会の事務局を担当しています。普段の事務作業ではフレームワークの使用頻度は低いものの、大会の運営方式や競技コンセプトの見直しといった全体の方向性を再検討する際には、これらの手法が役立つと感じています。 決断の基準は? また、決断を下す際には、現状をフレームワークを通して分析し、課題を明確にした上で対策を検討することが必要です。議論においては、参加者それぞれの意見が異なるため、全員の同意を得るのは容易ではありません。その中で、リーダーとしては均衡を取りつつ、最終的に決断を行う責任があります。私は自分なりの判断軸を持つとともに、長期的な視野と一貫性を意識しながら、落としどころを見つけ出すよう努めています。

データ・アナリティクス入門

なぜ?が鍵!明確目標のデータ分析

比較って本当に必要? ナノ単科の講座を受講して、データ分析における比較の大切さや、目的を明確にする意識が身につきました。分析とは、単に数値を眺めるだけではなく、何を見せたいのかという目的を持って行うものだと感じました。 なぜ条件を揃える? 講座では、同じものを比較する際に条件を揃えることや、なんとなく行っていた作業を言語化して知識として整理する重要性について学びました。また、各手法を選ぶ理由に「なぜ」を問う習慣が、より精度の高い分析に繋がると実感しました。 分析をどう活かす? 顧客データを基にした採用分析や、改善施策の振り返り、マーケットの動向を踏まえた戦略策定など、具体的な課題特定のプロセスを通じて、分析の実務的な活用方法についても深く考えることができました。 理由は何だろう? さらに、普段の業務においても、ただ感覚に頼るのではなく「ここを見せたいからこのグラフを使う」「ここで比較するために条件を合わせる」といった、明確な理由付けを意識してデータを扱うことの重要性を再確認する機会となりました。

データ・アナリティクス入門

問題を整理して解決する!ロジックツリー活用術

分解手法の魅力は? 要素を細かく分解する手法が印象に残りました。単に「売上不足」と捉えるのではなく、生徒数と単価という視点で分解し、売上を構成する要素をロジックツリーで整理、さらにMECEの考え方に沿って網羅的に分類する点が非常に整理され、有用であると感じました。 来期計画にどう活かす? ちょうど来期の計画策定中で、中期経営計画と現状との差を埋める方法を検討する際に、この考え方が大いに役立ちそうです。未達の原因をロジックツリーに基づいて分解し、それぞれに対して具体的に不足している要素や達成するための手段を考えるアプローチを取り入れたいと思います。 整理方法は本当に? また、問題をロジックツリーで整理し、MECEの視点で確認する方法も非常に効果的だと感じました。例えば、ある分野の実績不足について、売上を契約単価と契約数に分け、契約単価は物件価格やリース料率、契約数は営業の人数や営業一人あたりの契約件数に細分化して検討することで、各項目における課題や解決策を明確にできるという点が特に参考になりました。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

マーケティング入門

ペインとゲインで変わる!売上促進の新戦略

顧客ニーズの捉え方は? 顧客の真のニーズを捉える具体的な方法を学びましたが、それにはコストや手間がかかるデプスインタビューのような方法も含まれます。したがって、状況に応じて多様な手法を用意しておくことが重要であると認識しました。 ペインとゲインの重要性を考える これまで、自社商品のニーズについて考える機会は多くありましたが、ペインポイントについて考えることはあまりありませんでした。商品が抱えるペインポイントと、提供する価値であるゲインポイントを言語化することで、新しい販売施策のアイデアが生まれる可能性があります。また、それは広告や宣伝においても、新たな視点から消費者に訴求するメッセージを出せるようになるだろうと感じました。 次のステップは何にする? 今後のアクションとして、自社商品のペインポイントとゲインポイントをすべて書き出し、部署のメンバーからフィードバックをもらって完成させていきます。そのアウトプットを基に、最低でも一つの販売施策のアイディアを考え、具体化するための行動を始めるつもりです。

「方法 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right