データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

マーケティング入門

戦略を練る!マーケティングの新発見

マーケティングの基本とは? マーケティングとは、相手に価値や魅力を伝えることを通じて、顧客にその魅力を感じてもらい、商品を購入してもらうための仕組みやプロセスを作ることです。自分自身をPRするワークでは、自身の価値ではなく、思いや感想ばかりを伝えてしまい、主旨から外れた回答をしてしまいました。この経験から、まず何を伝えたいのか、そしてどのように伝えるのかという軸をしっかり持つ必要性を強く感じました。 営業戦略に必要な「軸」とは? 本社や支社の方針に基づいて自身の営業活動の戦略を組み立てる際や、商品プロジェクトの方針作成、販売方法の立案を進めるうえでも、この軸は重要です。顧客に新商品や既存商品を提案する際、あるいはキャンペーンを立案・提案する場合にも、明確に何を伝えるべきかを考えることが求められます。 ライブ授業の経験から学ぶこと ライブ授業での経験を活かし、自分が一番伝えたいことをどのように表現するかを常に考える癖をつけることが大切です。また、マーケティングとセリングの違いを意識し、戦略を立てる際には、4Pや3Cを踏まえ、明確な差別化を定義して提案内容を練り上げることが重要です。

マーケティング入門

顧客視点の深層ニーズ探求術

顧客の真意は何? 「顧客からの意見をそのまま商品化しても、それが必ずしも成功するわけではない」との考え方に深く共感しました。商品化の難しさや顧客目線での本当のインサイトをしっかりキャッチすることの重要性を感じました。顧客の声をいかに解釈し、表面的な意見ではなく、深いニーズを探ることが大切です。 なぜ競合と比べる? また、顧客目線で考えているつもりが、いつの間にか競合商品と比較してしまうこともあると気づきました。この点についても、うなずきながら学習を進められました。 差別化の鍵は何? 商品差別化が難しい状況で、デプスインタビューなどから得たニーズやインサイトを的確に読み取ることの重要性を感じています。その際、顧客のシーンやネーミングも検討の対象として考える必要があります。 具体策は何? 具体的なアクションプランとしては、デプスインタビューでの知見の洗い出しや顧客の行動を考慮した想像力の働かせ方、さらにイノベーション普及の要件をどう当てはめていくかを探求しています。他社のD2Cブランドを研究し、キャッチコピーの検討に役立つパーセプションフローを考えることも進めています。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

戦略思考入門

失敗談から学ぶ成功への道筋

なぜ基礎知識は必要? メカニズムを学ぶには、基礎知識と失敗談の学習が必要だと感じました。基本的には成功に至る道筋がありますが、重要なのはリスク要因をしっかりと文言化することです。成功は様々な要素と偶然が絡むことが多く、要因を完全に特定するのは困難です。しかし、失敗を経験から学ぶことは可能です。失敗した要因は特定しやすいと考えられるため、その学びは貴重です。 価格効果をどう考える? また、差別化を考える時と同様に、価格の効果性を最大化することも重要です。インフレの時代には、価格を無視した施策だけでは顧客満足を得にくいため、新規業務やBPOにおける収益化を考える際に、その知見を活用することが重要です。価格とメカニズムを深く分析し、根拠のある提案を行うことを心掛けましょう。 成功談から何を学ぶ? まずは成功者の成功談や失敗談を本から学び、知見を広げることが大切です。最近では動画でも多くの情報が得られますので、常に最新の情報をインプットし続けることが重要です。このような知見の積み重ねが、意思決定者へのプレゼンテーションや提案の質を向上させることにつながります。

戦略思考入門

差別化の鍵を見つけた私の挑戦

差別化の見つけ方を探る 差別化について考える際、これまで私はコールセンターやカスタマーセンターのような業界において、サービスの差別化は難しいと感じていました。しかし、どのような点にこだわって価値を提供したいのか、特定の顧客層にどのように満足していただきたいのか、そして他社にない自社の強みは何かを一つ一つ分析することで、差別化は可能だと気付きました。総合的な評価にとどまらず、特定の領域での圧倒的な強みを打ち出し、顧客に価値を提供できる組織を目指したいと考えています。 デジタル化の成功への道は? デジタル化に関しても、他社が導入している機能に追いつかなければならない、一般的に必要だと言われているから導入しなければならない、としてコストと人を投入してきた過去がありました。しかし、導入が本当に競争力を生み出すのか、一度立ち止まって分析することが重要です。VRIO分析を活用してこそ、同じ方向で小さな差別化を積み重ねられるのではないかと思います。このため、次年度の方針を立てるにあたっては、組織の中の自チームにおいても、VRIO分析と差別化の視点を重視して考えていきます。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

データ分析で差をつける!実務のヒント

どうして比較が鍵? 分析は比較です。判断基準には、Aがある場合と無い場合を比較することが重要です。適切な比較対象を選ぶことが鍵であり、特に分析する要素以外の条件を揃えること(Apple to Apple)が必要です。分析の目的に応じて比較対象を選定します。 実務でどう活かす? 実務では、委託業者の選定などにおいて、この知識が非常に役立つことがわかりました。データ分析は比較が基本ですので、何のためにどのようなデータが必要なのかを明確にし、仮説を立てることが重要です。これにより、データ分析の目的をはっきりさせ、早速実践に移したいと思います。 コンテンツをどう提案? ラーニングイベントのサーベイ結果をもとに、今後提供可能なコンテンツをいくつか提案する予定です。実践プロセスとして、まずはデータ分析の目的を仮説に基づいて明確化し、次に判断基準を具体化します。具体化のステップとしては、Aがある場合と無い場合を比較し、適切な比較対象を選ぶこと、また分析したい要素以外の条件を揃えて(Apple to Apple)、目的に沿った比較を行います。

クリティカルシンキング入門

グラフの選び方で差がつく資料作り

グラフの選び方は? スライド作成に限らず、メールや文章作成時にも役立つポイントが多く含まれていました。特にグラフ作成においては、何を表現したいのかを明確にし、その目的に適したグラフを使用することが大切です。なんとなくでグラフを選ばず、読み手が一目で何を言いたいかが伝わるように意識します。 他者の視点を採る? 現在、市場分析でBIツールを使いながらグラフを作成しています。その際、どのグラフが最適かを考慮して選択しています。作成したグラフをスライドにするときには、シンプルなタイトルと内容を心がけ、全体がすぐに理解できるようにしています。しかし、作成者本人ではなかなか読み手の視点に立てないため、第三者にもスライドを確認してもらい、意見を収集しようと考えています。 どう伝えるのが良い? 伝えたい内容とその目的を整理し、漠然とした選択でグラフを使わないことが肝心です。読み手に過度な解釈を強いるスライドや資料、文章にはしないように心がけます。第三者にフィードバックを求め、修正を加えながら、伝えたいことが正確に伝わる内容に仕上げます。

戦略思考入門

知識から行動へ、戦略の軌跡

戦略の基本はどう? 戦略の根本を学び、最短かつ最速でゴールへ到達するための考え方を身につけました。とりあえず行動を起こすのではなく、実際に取り組むかどうかを判断するため、ビジネスフレームワークを用いて戦略を練る重要性を理解しました。 実践で何が掴める? また、「分かる」状態から「できる」状態へと変えるプロセスについて、さまざまな角度から学ぶことができました。知識を具体的な行動に結びつける方法も、実践を通して体得しました。 集客戦略はどうだ? この学びは、クライアント向けに集客効果のあるイベントを企画立案・運営する際に非常に役立ちます。たとえば、企画の際に差別化や独自性、実行すべきか否か、顧客層の明確化やニーズの分析など、様々な視点を整理する一助となりました。 差別化の秘訣は? 具体的には、依頼された手作りのマルシェ企画運営において、ターゲット、イベント内容、キャッチコピーなど類似した要素が多い中で、どのように差別化を図るかを検討する際、フレームワークを活用して全体を可視化し、論理的に整理する手法を実践しました。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

「本 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right