戦略思考入門

差別化戦略で競争優位を築く方法

差別化の鍵は何? 3Cのフレームワークで学んだことを通じて、差別化戦略を考える際の重要なポイントとして、訴求するターゲット顧客の設定と顧客視点での競合の設定があることを理解しました。 自社をどう活かす? この考え方を基に、自社のリソースで何が可能であり、また中長期的な差別化がどのように実現できるかを検討する必要があります。競合に意識を向け過ぎると顧客への配慮が薄れるため、常に大局的に物事を見る習慣を身につけたいと考えています。 自部署の価値は? バックオフィス業務の集約化・効率化を図る自部署の業務形態を考えると、顧客は本社や店舗であると理解しています。この範囲内では直接的な競合は存在しないものの、将来的に業務の範囲を社外まで広げる際には競合との差別化が不可欠です。そのため、自部署が提供できる価値を改めて整理する必要があると感じました。 資源の整理は? 顧客や競合の設定に先立って、現状の情報整理が不十分であると感じています。そこで、今回のVRIO分析を参考にしながら、自部署が持っている価値、希少性、模倣困難性、そして組織としてどのような資源があるのかを整理することから始めたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

戦略思考入門

顧客主役の戦略が未来を変える

顧客への気づきは? ビジネスの勝敗は顧客によって決まるという考え方は、私にとって大きな気づきでした。まず「顧客とは誰か」を明確にし、その顧客が本当に求めている価値を深く掘り下げることが重要だと実感しました。そして、その価値を実現する手段として、持続可能であり他社にない独自性を持った戦略が求められると理解しました。 戦略立案で何を学ぶ? 戦略の立案にあたっては、コスト・リーダーシップ、差別化、集中という3つの基本戦略が存在し、これらとVRIO分析を組み合わせることで独自の優位性を構築できる点に納得しました。 営業戦略の狙いは? また、営業戦略を考える際には、ミドルセグメントに属する顧客―従業員数300〜1,000名の企業―のニーズを的確に捉えることが大切です。さらに、競合他社がどのような戦略を採用しているのかを整理し、その情報をもとに自社の大方針を決定するプロセスも重要だと感じました。 経験が示すものは? 実際の営業経験を通じて、顧客の求める価値や市場の動向、競合の戦略状況を把握し、VRIO分析を活用して自社の優位性を明確にすることが、最終的な戦略立案において不可欠であると確信するに至りました。

データ・アナリティクス入門

課題解決を導く仮説思考の力

仮説構築フレームワークの活用法は? 仮説構築のフレームワーク(3Cや4P)を課題解決に活用し、実際に使うことで自分の思考のクセを理解しました。このフレームワークは何度も活用して定着させることが大切だと感じました。また、手元にデータがあるとすぐに分析を始めるのではなく、まず複数の仮説を立ててからデータを用いて検証する順番を強く意識する必要があると学びました。これは、私がデータがあるとすぐに分析に取り掛かるクセがあるためです。 依頼元とのコミュニケーションの重要性 各事業の依頼に対しては、目の前のデータだけで解決するのではなく、本質的な課題を見極めるために依頼元とコミュニケーションをとりながら仮説を立てていくことの重要性を感じました。今回学んだフレームワークを活用し、事業ごとに複数のフレームワークを使い分けながら仮説を広げていくつもりです。 伴走案件への仮説思考の応用法は? 来週から複数の伴走案件が始まる予定なので、課題に対して広い視野を持ちながら仮説の幅を広げていきます。多くの案件を同時に進行する中で、関心や問題意識を向上させると共に、課題の深掘りに差が出ないよう、仮説思考を実践していきたいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

マーケティング入門

戦略を練る!マーケティングの新発見

マーケティングの基本とは? マーケティングとは、相手に価値や魅力を伝えることを通じて、顧客にその魅力を感じてもらい、商品を購入してもらうための仕組みやプロセスを作ることです。自分自身をPRするワークでは、自身の価値ではなく、思いや感想ばかりを伝えてしまい、主旨から外れた回答をしてしまいました。この経験から、まず何を伝えたいのか、そしてどのように伝えるのかという軸をしっかり持つ必要性を強く感じました。 営業戦略に必要な「軸」とは? 本社や支社の方針に基づいて自身の営業活動の戦略を組み立てる際や、商品プロジェクトの方針作成、販売方法の立案を進めるうえでも、この軸は重要です。顧客に新商品や既存商品を提案する際、あるいはキャンペーンを立案・提案する場合にも、明確に何を伝えるべきかを考えることが求められます。 ライブ授業の経験から学ぶこと ライブ授業での経験を活かし、自分が一番伝えたいことをどのように表現するかを常に考える癖をつけることが大切です。また、マーケティングとセリングの違いを意識し、戦略を立てる際には、4Pや3Cを踏まえ、明確な差別化を定義して提案内容を練り上げることが重要です。

マーケティング入門

顧客視点の深層ニーズ探求術

顧客の真意は何? 「顧客からの意見をそのまま商品化しても、それが必ずしも成功するわけではない」との考え方に深く共感しました。商品化の難しさや顧客目線での本当のインサイトをしっかりキャッチすることの重要性を感じました。顧客の声をいかに解釈し、表面的な意見ではなく、深いニーズを探ることが大切です。 なぜ競合と比べる? また、顧客目線で考えているつもりが、いつの間にか競合商品と比較してしまうこともあると気づきました。この点についても、うなずきながら学習を進められました。 差別化の鍵は何? 商品差別化が難しい状況で、デプスインタビューなどから得たニーズやインサイトを的確に読み取ることの重要性を感じています。その際、顧客のシーンやネーミングも検討の対象として考える必要があります。 具体策は何? 具体的なアクションプランとしては、デプスインタビューでの知見の洗い出しや顧客の行動を考慮した想像力の働かせ方、さらにイノベーション普及の要件をどう当てはめていくかを探求しています。他社のD2Cブランドを研究し、キャッチコピーの検討に役立つパーセプションフローを考えることも進めています。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

戦略思考入門

失敗談から学ぶ成功への道筋

なぜ基礎知識は必要? メカニズムを学ぶには、基礎知識と失敗談の学習が必要だと感じました。基本的には成功に至る道筋がありますが、重要なのはリスク要因をしっかりと文言化することです。成功は様々な要素と偶然が絡むことが多く、要因を完全に特定するのは困難です。しかし、失敗を経験から学ぶことは可能です。失敗した要因は特定しやすいと考えられるため、その学びは貴重です。 価格効果をどう考える? また、差別化を考える時と同様に、価格の効果性を最大化することも重要です。インフレの時代には、価格を無視した施策だけでは顧客満足を得にくいため、新規業務やBPOにおける収益化を考える際に、その知見を活用することが重要です。価格とメカニズムを深く分析し、根拠のある提案を行うことを心掛けましょう。 成功談から何を学ぶ? まずは成功者の成功談や失敗談を本から学び、知見を広げることが大切です。最近では動画でも多くの情報が得られますので、常に最新の情報をインプットし続けることが重要です。このような知見の積み重ねが、意思決定者へのプレゼンテーションや提案の質を向上させることにつながります。

戦略思考入門

差別化の鍵を見つけた私の挑戦

差別化の見つけ方を探る 差別化について考える際、これまで私はコールセンターやカスタマーセンターのような業界において、サービスの差別化は難しいと感じていました。しかし、どのような点にこだわって価値を提供したいのか、特定の顧客層にどのように満足していただきたいのか、そして他社にない自社の強みは何かを一つ一つ分析することで、差別化は可能だと気付きました。総合的な評価にとどまらず、特定の領域での圧倒的な強みを打ち出し、顧客に価値を提供できる組織を目指したいと考えています。 デジタル化の成功への道は? デジタル化に関しても、他社が導入している機能に追いつかなければならない、一般的に必要だと言われているから導入しなければならない、としてコストと人を投入してきた過去がありました。しかし、導入が本当に競争力を生み出すのか、一度立ち止まって分析することが重要です。VRIO分析を活用してこそ、同じ方向で小さな差別化を積み重ねられるのではないかと思います。このため、次年度の方針を立てるにあたっては、組織の中の自チームにおいても、VRIO分析と差別化の視点を重視して考えていきます。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

「本 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right