データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

クリティカルシンキング入門

問いが拓く本質と成長の軌跡

イシューの本質は何? 解決すべき課題、つまりイシューを明確にすることの大切さを学びました。なぜなら、本質ではない課題に取り組むことで無駄な時間が増えてしまうからです。また、イシューは経験的に忘れやすいため、定期的に振り返ることも重要であると感じました。(会議中に議論が横道にそれる場合などが参考になりました。) チームリーダーの疑問は? 一方、来年度からチームリーダーを任される立場として、今まで経験のなかったタスクの引継ぎを受けています。その際、タスクの目的、成果物が誰にどのように利用されているか、関係者は誰か、そしてタスクの重要なポイントはどこかといった問いを立てることで、タスクの理解度を高めたいと考えています。特に、リーダーが直接対応するタスクが逼迫すると、顧客からの新たな依頼に迅速に対応できなくなる懸念があるため、事前の段取りをしっかり整えることが求められます。 振り返りで学んだことは? これまでの学びを振り返ると、客観的に物事を捉えるためには、適切な問いを立て、複数の切り口から情報を紐解いて構造化することが不可欠だと再認識しました。しかし、過去はしっかりとした問いを設けず、経験や感覚だけで「類似している」と判断していたため、解像度が粗くなり、手戻りやミスによる工数の増大という問題を招いていました。特に未経験の業務においては、解像度がさらに低くなりがちなため、今後は問いを意識的に立て、記録しながら振り返る習慣を継続していくことが重要だと感じています。

リーダーシップ・キャリアビジョン入門

リーダーシップの新たな視点を探る旅

リーダーシップの行動に何が求められる? リーダーシップには、行動、能力、意識が重要です。これらのうち、他者から直接見えるのは行動であるため、リーダーシップでは行動に特に重点が置かれます。しかし、行動は「能力×意識」によって成り立っているため、能力の向上と意識の醸成を踏まえた行動が求められると感じました。 リーダーシップとマネジメントの違いは? リーダーシップとマネジメントの役割を明確にすることも重要です。リーダーシップは、変革の推進を主な任務とし、そこでは0から1を生み出すような新しい旗を掲げます。これに対し、マネジメントは、掲げた旗のもとで効率的な運営を担当します。リーダーあるいはマネージャーとして、どちらの役割が求められているかをきちんと把握することが大切です。 新たな施策導入のポイントは? 過去に自分が経験した仕事の中で、成功した変革に関わる行動やその背景にあった意識を振り返り、言語化することが求められます。10月は下半期の始まりで、上半期の成果を踏まえて新たな施策を導入する時期です。この月を通じて新しいアイデアを部門で発表し、意識も含めた行動計画を示してメンバーを巻き込む努力を心がけます。 実践におけるコミュニケーションの重要性 リーダーシップとマネジメントの実践においては、メンバーとの会話をしっかり行い、その習熟度や意気込みを確認することも重要です。過去の事例を参考にしつつ、実際の場面で効果的にリーダーシップを発揮するよう努めるつもりです。

クリティカルシンキング入門

目的を見失わない業務改善の心得

目的はどう定める? 本講座を通じて得た学びの中で、特に印象深かったのは「目的をしっかりと定め、絶えず見失わないこと」という点です。業務を進めるにあたり、常に「何のためにやるのか」「その目的は何か」という視点を持ち続けることで、日々の業務がより有意義で効率的になると感じました。 業務にどう活かす? これらの学びを自身の業務全般に活用したいと思いました。電話やメール、プレゼンテーション、会議、資料作成、受発注管理、品質管理、交渉、さらには課題や問題へのアプローチなど、多様な場面でこの知識を自然に使いこなせるようになりたいです。特に、「このメールを書く目的は何か」「この会議や打ち合わせの狙いは何か」「誰に向けてどんなプレゼンテーションをするのか」といった視点は、日々の業務で頻繁に活用する必要があると実感しています。 連絡方法はどう改善? また、メール作成においては、単調な書類を除き、できるだけ一度時間を置いてから見直すことを心掛けています。過去の経験からも、そのまますぐに送信すると、相手にしっかり伝わらないことが多々ありました。メールを作成した後に30分以上置いてから再度確認する、あるいは翌朝の頭がすっきりしているときに見直すことで、相手目線での冷静な判断が可能になります。さらに、プレゼンテーションでは「相手は誰か」「何を知りたいと思っているか」を常に考慮し、相手によって資料の内容や構成を柔軟に変える努力を惜しまないことが大切だと改めて感じました。

戦略思考入門

捨てる勇気で未来を変える

決断に必要な覚悟は? 今週の学習では、職位に伴い「捨てる=決める」覚悟が求められることを再認識しました。決断の難しさは、実行によって得られるお客さまの満足度や、金銭的コスト、運営効率といった具体的な要因に加え、現状の人間関係にも左右されるため、一層厄介に感じます。本来、仕事の目的はお客さまのためであることを再確認し、その視点を失わないよう、勇気を持って決断していきたいと考えています。 なぜ変化が難しい? また、GAILにおける業務や対応について、なんとなく慣習的に行われている点が存在することも痛感しました。変化を起こすにはエネルギーが必要で、現状維持が一番楽に見えるため、思考停止に陥ってしまうケースがあると感じます。短期的には問題がなくとも、長期的には現状維持が続くことで衰退につながる可能性もあるため、PDCAサイクルを積極的に回し、業務の背景や考え方を継承することが重要だと思いました。また、定期的な担当者(またはマネージャー)の入れ替えにより、「なぜこうする必要があるのか」という疑問を持ち続ける環境を整えることも大切です。 なぜ優先順位付けが必要? さらに、整備士向けのスキルコンテストの事務局業務では、毎年恒例の行事ということもあり、過去の方法にただ従っているタスクがいくつか存在するのが現実です。限られた時間の中で、これまで何となく実施してきたタスクに優先順位をつけ、定量的な判断に基づいて、継続するか見直すかの決断を下す必要があると感じました。

アカウンティング入門

資金計画とB/Sで描く未来への道筋

貸借対照表とは何か? 貸借対照表(B/S)について学びました。B/Sは左右に分かれており、左側が資産の部、右側が負債の部です。この両者は必ず一致してバランスしています。資産には流動資産と固定資産があり、負債には流動負債と固定負債があります。それぞれを区別するポイントは、1年以内に現金化または返済されるかどうかです。 事業資金の準備はどう進める? 次に、事業開始にあたって必要となる資金の準備について考えました。具体的にどのくらいの資金が必要なのかイメージし、その資金を自己資金で賄えるのか、それとも借入が必要なのかを判断します。また、借金することのリスクや、無借金経営の可能性についても考察しました。 B/S分析から何が見える? 自社のB/S確認と分析も行ってみました。様々な業種や会社のB/Sを確認することは有益で、特に流動資産、固定資産、流動負債、固定負債に実務でどう当たるのかを具体的に考えることが重要です。例えば、支社のリフォーム費用や備品の購入はどの項目に該当するのかを検討しました。また、自社の無形固定資産であるソフトウェア製品が利益を生む仕組みにも関心を持ちました。 公開情報から何を学ぶ? 自社の財務諸表はすべて公開されているわけではありませんが、過去に開示された情報を確認しました。これにより、公開された情報や金額がB/Sのどの項目に該当するのかを分析しました。役員に確認し、過去分で開示可能な決算書があるかどうかを調査することも行いました。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

マーケティング入門

顧客ニーズを深掘りするための新発見

顧客ニーズをどう理解する? 顧客のニーズを探ることは非常に難しいものです。顧客が本当に求めているニーズには、顧客自身も気づいていないものが存在します。そのようなニーズを引き出す手法として、対話が重要であると感じました。特定の商品が欲しいというのは、その商品自体が前提とされたニーズになってしまうため、注意が必要です。 ペインポイントの捉え方とは? 顧客ニーズの捉え方として「ペインポイント」があります。ソリューション開発でこれを考える機会がありますが、「あるべき姿」ではなく、「ありたくない姿」を切り口に深く掘り下げていくのが、自分に合っていると感じています。しかし、これは一般的な商品販売とは異なるため、過去の業務とは毛色が違い、苦手意識が残る場面もあります。 真因の探求が重要な理由 業務設計において真因を探ることは重要で、取引先が抱える課題解決が顧客ニーズとなりますが、既存サービスでは解決できないケースもあります。このギャップを明確にし、課題解決につなげることで、差別化を図り、ニーズを満たすことが可能となります。ただ個別でカスタマイズを行う際の困難さとのバランスをうまく取る必要があると感じます。 今後も継続して真因の解決を意識し、取り組んでいきたいと考えています。ある程度パッケージ化されたサービスが整ってきていますが、それをそのまま適用して件数の確保(セリング)につなげています。この恵まれた環境にいる間に、マーケティングを定着させておきたいです。

データ・アナリティクス入門

グラフと数値に学ぶ新視点

グラフ選定はどう決める? まず、グラフ選定の際の仮説の重要性を実感しました。これまで、複数のグラフを何となく並べ、どのグラフが伝えたい内容をより効果的に示すかという観点で選んでいました。しかし、自分が何を比較し何を見たいかを明確に設定した上でグラフを選ぶことの大切さに気付くことができました。 標準偏差、どう理解する? 次に、標準偏差への理解が深まりました。過去に数値として用いた経験はあったものの、どのような場面でどのように解釈すべきか、また算出方法や示す内容について十分に言語化や深堀りができていなかったと感じています。これを機に、もう少し詳しく学びたいと思います。 加重平均、どう捉える? また、ちょうどこの時期に話題となっている最低賃金改定を通して、「加重平均」という言葉の意味が理解できたのも印象的でした。普段から苦手な「割合」や「率」の変化については、今後データを取り扱う際により慎重に見極めていこうと思います。 平均と分散の見方は? さらに、平均値はこれまでピックアップすることが多かったのですが、数字のばらつきについては、存在を漠然と理解していたものの、どのように処理すればよいのか、そこからどんな示唆が得られるのかを考えてこなかったと実感しました。今後は、各種スコアや遷移率を分析する際、平均値だけでなく分散から見える傾向も踏まえ、案件や地域ごとの特性をより多角的に捉えられるよう、データの切り口や分析方法の幅を広げていきたいと思います。

データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right