マーケティング入門

マーケティング思考で業務を進化させよう

学びはどこから? 業務への学びの落とし込みについて、私はライブ授業でのグループワークを通じて、学んだことが行動や思考に十分に反映されていないことを感じました。特に、最近のプロダクトに関する案件で、メインコピーを考える際にポジショニングの観点を意識できていませんでした。ライブ授業で学んだ方法を活用して競合分析を行い、顧客ニーズを満たすための明確なポジショニング軸をチームと共に検討し、根拠を持って取り組んでいきたいと考えています。 生活で気づくヒントは? 日常生活でもマーケティング思考を磨けることを学びました。ヒット商品や失敗した商品の要因を考察し、ターゲットを分析することで、業務だけでは補えない経験を得たいと思っています。 ターゲティングは何から? ターゲティングの明確化に関しては、現在「経理部」をターゲットとしているものの、より具体的なセグメントへの分解ができていません。受注傾向を深掘りし、ターゲティングを明確に再設定し、社内の共通言語として共有したいと考えています。また、お客様の声を聞く場面が多くあることで、顧客ニーズを捉えていると誤解しがちです。今一度、顧客が求めていることをしっかり理解したいと思います。 客観視点はどうする? プロダクトへの思い入れが強く、客観的なアウトプットの判断ができていないと感じています。製販一体の良さを活かしつつも、プロダクトへの関与がアウトプットの客観性を損なうリスクについても認識し、現在の訴求内容が自社視点に偏っていないか顧客視点で見直したいと思っています。各アウトプットが顧客にどのようなイメージを与えているかを整理し、望ましいイメージかどうかを検討していく必要があります。 根拠説明は何かしら? まずは自らが根拠を持ってターゲティングを説明できるようになりたいです。受注分析に加えて、3C分析やSWOT分析を活用し、内外の状況を整理した上で、根拠を持ったターゲティングを行いたいと考えています。その後、チーム全体で統一したターゲティングを共有し、ターゲット優先度の調整を行うことが重要だと思います。チームとして共通の理解を持つことが目標です。 イメージ整理は正しい? 顧客に与えたいイメージについて、ポジショニングを整理し、明確化することが必要です。まずは各アウトプットが顧客に与えているイメージを把握し、それが望ましいものであるかをポジショニングと照らし合わせてブラッシュアップしたいと思います。

戦略思考入門

技術が拓く戦略の全体像

現在地とゴールは? これまで一週間ごとに学んできたフレームワークや概念が次第に結びつき、戦略思考の全体像が見えてきたと感じました。全体像を捉える過程では、まず自分の「現在地」を正確に把握し、目指すべき「ゴール」を明確に設定することが重要だと理解しました。 取捨選択の意義は? ゴールへの道筋では、学んだ差別化の手法を活用し、何を行い何を捨てるかという取捨選択が不可欠です。これらの判断やプロセスの根底には、市場の動向や事業の経済性―具体的には規模の経済性、範囲の経済性、ネットワーク経済性といった要素―を捉える視点があることを再認識しました。複数のフレームワークを駆使することで、一連の流れがより明確に整理されると感じています。 市場メカニズムは? また、市場のメカニズムを理解することは、競争の力学や自社の強み、そして新規参入の際の機会や障壁といった辺りについて、深い洞察を得る上で非常に意義あるものでした。こうした知識は、戦略立案の際の差別化や取捨選択の判断、さらには最終的なゴール設定に対しても、客観的で効果的な意思決定を下すための基盤となります。 技術は手段か? 一方で、エンジニアとして身につける技術や知識は、目的そのものではなく、ビジネスで何を成し遂げるかという目標に沿って活用するための「手段」に過ぎないと痛感しました。技術的に正しい選択が必ずしもビジネスとして最適とは限らず、市場環境や利用可能な資源という文脈の中でその真価が引き出されるのだと感じます。 技術と目的の調和は? 今後は、「技術はあくまで手段である」という視点を持ちつつ、利益創出やコスト最適化などのビジネス上の目的と技術的取り組みとのバランスを意識していきたいと思います。エンジニアとして専門性を高めるために、さらなる技術習得や知識の深化に努め、多様なフレームワークを駆使して問題解決や価値創造に寄与できるよう、着実に「手札」を増やしていきます。 利益構造の理解は? また、自社の利益構造や業界全体の動向、市場のメカニズムをより深く分析することで、技術や知識がどの場面で最大の効果を発揮できるかを見極め、その「ビジネスの文脈」を正確に理解していくことも大切であると感じました。 学びをどう活かす? これらの学びを基に、具体的なビジネス課題や目指すべきゴールに対して、最適な技術と知識を適切なタイミングで選択し、実際の行動に移すことで、事業に主体的に貢献していけると確信しています。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

ターゲットを絞り込む勇気の一歩

差別化の学びは? 差別化を検討する際に重要な2点について学びました。 ターゲットはなぜ狭める? まず、ターゲットの絞り込みの重要性です。施策や差別化の検討には、ターゲットを具体的に設定することが不可欠です。この設定がしっかりしていれば、他の検討事項もぶれずに進めることができます。私は受注の可能性を考えるあまり、ターゲットを広く設定しがちでしたが、今回は勇気を持って絞り込んで施策を考える必要があります。 競合視野はどう検討? 次に、より広く競合を視野に入れる必要性についてです。これを業務に置き換えると、自社会計システムに関する施策を検討する際、他社の会計システムだけを見ていました。しかし、業務自体を外注するBPOサービスや税理士なども考慮すべきです。さらに、エクセルなどの無料ツールも、顧客のニーズから見れば競合といえます。顧客がどのようなニーズを持って当社サービスを検討しているのか、改めて整理し、必要な競合を漏れなく洗い出したいと思います。 媒体はどう選ぶ? 営業資料の作成や広告、オウンドメディアの場面では、ターゲットをより詳細に具体化したいです。また、今まで注目していなかった広義の競合(例えばBPOやエクセルなど)にも目を向け、その競合との差別化を進めていきたいです。 予算割当はどう決める? 予算の割り振りを検討する場面では、VRIO分析を活用したいと考えています。これまでは過去の実績や受注傾向を元に予算を決定していましたが、今後はVRIO分析によって内部資源の強みを把握し、強化する施策や予算配分を考慮したいです。 絞込みは本当に有効? 勇気を持ってターゲットを絞り込む決断はまだ十分とは言えません。分析やフレームワークを活用した情報整理も必要ですが、それに基づきターゲットを効果的に絞り込む決断を意識したいと思います。 顧客ニーズは何を示す? 顧客のニーズを見直すことで、広義の競合を洗い出す際に役立つと考えています。そのためには、3C分析の顧客部分をより精緻にし、それに基づいた競合の洗い出しと差別化戦略の構築を進めていきます。 VRIO分析の成果は? 最後に、VRIO分析を初めて学びましたので、実際にアウトプットを作成し、そこから何が見えてくるのかを体験したいです。また、新入社員に意見を求めることで、内部資源をさまざまな角度から客観的に捉えることができているかを振り返りたいと考えています。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

クリティカルシンキング入門

文章整理で気づいた書き方の大事さ

文章で何を再認識した? 文章にするということは、相手に自分の頭の中にあることを言葉で伝える作業であると再認識しました。私自身、思考方法以上に文章の書き方に癖があることを認識し、反省しました。無意識に日本語をあやふやに使っていたり、文章全体を俯瞰していなかったり、相手の状況に沿った文章になっていなかったことに気づかされました。 論理構造をどう整理する? 日本語では、主語と述語の関係を意識して正しく使用することが重要です。文章全体を俯瞰して論理を組み立てるために、主張を説明する際には対となる概念を使って階層化することが大切です。階層化する際には、粒度、すなわち抽象度を揃えることが求められます。文章全体を俯瞰する際には、ピラミッドストラクチャーが有用であり、論理に飛躍がないかなどの妥当性をチェックすることができます。 ピラミッドストラクチャーの利用法は? 文章を書く際は、まず論理構造を整理し、相手の立場を考慮して主張の妥当性をダブルチェックするように心がけたいです。この実践を、特にレポートや事業計画書の作成、複雑な情報を含むメールの作成、ウェブコンテンツの編集に活かしていきたいと思います。ピラミッドストラクチャーを用いて論理を組み立て、主張を明確にし、相手の状況を考えて文章全体を俯瞰してドキュメントを作成もしくは編集することを目指します。その際には、階層化の粒度が適切であるかを必ず確認します。 どのように論理構造を視覚化する? また、ミーティングや会話の中で主張を述べる際にも、このアプローチを活用したいと考えていますが、まずは論理構造を視覚的にチェックできるよう文章を書く力を身につけることが先決だと感じています。 MECEで課題をどう分解する? したがって、文章を書き始める前に、論理構造を意識してピラミッドストラクチャーで自分の考えを整理する時間を設けたいと思います。文章を作成する際には、誰に対して発信するのかを意識し、主張をサポートする理由をしっかり考えます。 レポート作成にどう活かす? 直近で作成するレポートにおいては、まず課題を明確にし、それをMECEの原則に従って分解していきます。そこから取り組むべき目標を決定し、なぜその目標に取り組む必要があるのかをピラミッド構造に基づいて考えます。その際、配信先を意識しながら対となる柱を立てることを心がけます。最終的に、日本語の正確さをチェックし、必要に応じて修正を行います。

リーダーシップ・キャリアビジョン入門

柔軟な指導で組織を動かす秘訣

リーダーは何を意識? 人や組織を動かすためには、組織全体の仕組みと個人の取り組みという二つの柱が必要だと実感しました。一人の努力だけで人を動かすことは不可能であり、「自分が頑張れば人が動く」という考えは傲慢になりかねません。リーダーシップを発揮する際は、組織の仕組みを十分に理解し、周囲に依存しすぎないように心がける必要があると感じています。 どう使い分ける? また、パス・ゴール理論においては、リーダーはその時々の状況や環境、メンバーの適合性に応じた行動を取らなければならないと学びました。指示型、支援型、参加型、達成思考型といった行動タイプはあくまで参考にとどめ、状況に合わせて柔軟に使い分けることが大切です。一つのタイプに執着せず、適宜ミックスして対応することで、リーダーシップの効果を最大限に引き出すことができると考えています。 状況はどう評価? そのためには、まず自分自身が状況を的確に把握することが求められます。自分がどんな仕事を行っているのか、そしてメンバーそれぞれの特性や理解度、達成度を定期的に振り返ることが必要です。雑談を含めた日々のコミュニケーションを通じ、相手の状況をしっかりと確認し、会話のキャッチボールを意識するようにしています。 振り返りのポイントは? もし、進捗が悪いメンバーや報連相が不足しているメンバー、ミスが目立つメンバーがいた場合は、まず自らのリーダー行動が適切であったか、またそのメンバーの状況を正しく把握できていたかを振り返るようにしています。 適正な対応は? たとえば、経験はあるがこだわりが強いために抜け漏れが見られるメンバーには、参加型のアプローチで自立性を尊重しつつも、明確にできていない点については感情を抑えて指示型の対応を行うよう心がけています。一方、経験が浅くやる気が感じられないメンバーには、まずは指示型の行動をベースに、できることを増やし自信を持ってもらうためのフォローを実施しています。間違いを恐れずに成長できる環境づくりを意識し、出来るようになればさらに良くなるという前向きなフィードバックを心がけています。 環境整備はどうする? また、環境要因を把握するためには、担当しているプロジェクトの背景や位置づけ、クライアントの特性を整理し、どのメンバーにも分かりやすい言葉で説明できるよう努めています。これにより、全員が同じ理解のもとで動けるような環境作りを目指しています。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

ゼロからプラスへ実践で拓く未来

どうして実践は難しい? ありたい姿と現状のギャップを何度も意識しているものの、実際に実践するのは非常に難しいと感じました。その中で、マイナスをゼロにする問題解決とゼロをプラスにする問題解決の違いに注目し、後者ではありたい姿をステークホルダーと共有することが重要という点がとても印象に残りました。デジタル技術が進む現代においては、問題発見力が一層求められる中で、TOBEを構想する力だけでなく、その構想について関係者と認識を合わせる共感力の重要性を再確認する機会となりました。 どの分析で理解する? また、what、where、when、whyのフレームを問題分析に取り入れるというシンプルなアイデアは、これまであまり意識してこなかったため、新鮮な学びとなりました。自分で活用する際も、他の人に説明する際も非常に分かりやすく、実用性が高いと感じています。 ロジック知識はどう? ロジックツリーやMECEのフレームについても、改めて説明を受けることで新たな気づきがありました。特に、層別分析と変数分析のジャンル分けは、普段無意識に行っていた部分が大きかったため、今後は意識的に思考のスイッチングに活用していきたいと考えています。 基本はなぜ大事? さらに、GAiLのセッションを通じて、経営における基本を徹底すること、すなわち凡事徹底の重要性を実感しました。WEEK0で学んだ事例に倣い、慣れや直感に頼らず、都度基本に立ち返って自分の手法を客観的に見つめ直すことが必要だと感じました。 切り口をどう捉える? また、さまざまなフレームワークや切り口が存在することから、情報を学べば学ぶほど実践時にどれを採用すべきか迷うこともあります。しかし、生成AIをパートナーにすれば、自分が直面する課題に対して最適なツールや切り口を模索する際の有力なサポートになると新たな活用方法を見出しました。 改善策は何か? 具体的な今後の改善点としては、まず凡事徹底のために自分が立ち返る教科書として本棚を見直すことから始めます。次に、ロジックツリーの活用については、自分が使用しているアウトライナーの新たな用途として、思考整理に取り入れ、層別と変数の切り替え(国語的分解と算数的分解)を意識して活用していきたいです。さらに、分析を始める前に一度立ち止まり、生成AIとともに最適なツールと切り口を検討することで、より効果的な問題解決のアプローチにつなげられると考えています。

データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

デザイン思考入門

実践フレームで未来の地図を描く

何を試したの? 某自動車メーカーの研究所向けに、若手研究者がシステム開発の上流工程を体験できるワーク題材として、いくつかのフレームワークを試してみました。まず、ユーザーの生活の質を向上させる自転車ライフのコンセプトづくりにおいて、ペルソナの共感マップを作成して課題を整理し、KJ法を活用して具体的なコンセプトを検討しました。そのうえで、理想の一日をシナリオ化し、ジャーニーマップを作成することで新たなユーザー要求を引き出す試みを行いました。また、雨の日でも快適に使える自転車の実現を目指し、SCAMPER法を用いて必要な機能を洗い出し、システムモデルを描くことで、思考過程や要素間の関係を明確に整理する工夫にも取り組みました。 成果に満足? 今回の取り組み全体を通して、複数のフレームワークを活用しながら具体的なユーザーシナリオを構築できた点が大変良かったと感じました。さらに、実践を重ねる中で得た気づきが、今後の新規事業開発案件に向けた実践的な適用に大いに生かせると感じています。個々のフレームワークが全体像にどのようにつながるかを改めて整理すると、さらなる理解が深まると考えます。 どう結び付けたの? また、ペルソナから得たインサイトをどのようにコンセプト設計に結びつけたのか、詳しく振り返ることも有意義です。同様に、SCAMPER法で洗い出した機能がどのようにユーザー体験の向上につながるのか、さらなる考察を進めると良いでしょう。 ポイントは何? これまでの実践を通じて、いくつかの大切なポイントに気づきました。まず、ユーザー要求を満たすためのアイデア出しでは、要求の抽象度を適切に調整することが不可欠であると実感しました。要求の抽象度を下げることで、具体的なアイデアが出しやすくなるという点です。次に、まず要求そのものを整理し、その後で機能へと段階的に展開していく方法が効果的であることを学びました。これにより、いきなり機能や物理的な要素に飛び込むことなく、整理がしやすくなると感じました。さらに、SCAMPER法を活用して洗い出した機能を再び抽象化し、要求ごとに整理し直すと、全体像が明確になり、機能の方向性が一層見えやすくなることを体感しました。 次の一手は? 今後の新規事業開発案件においては、今回の経験を踏まえ、フレームワークとシステムモデリングを活用しながら、思考の整理と抽象度のコントロールを意識して進めていきたいと思います。

「整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right