データ・アナリティクス入門

数字でひも解く学びの裏側

平均値だけで大丈夫? 平均値だけでは現状を正確に把握できないという点に気づきました。B校の平均年齢が30歳であると、一見「大人中心のスクール」と捉えられがちですが、実際のヒストグラムを見ると低年齢層と高年齢層に分かれており、19~40代が希薄な“空洞”となっていることが明らかです。分布のばらつきを示す指標やデータの可視化の重要性を再認識する結果となりました。 利益ギャップは何? また、利益ギャップの分析では「売上=生徒数×単価」や「費用=講師人件費+販管費」など、各要素をツリー状に分解して寄与度を評価すると、生徒数の減少が最も大きな影響を持つことが分かりました。数字を軸に構造、原因、施策へと論理的に掘り下げるプロセスは、限られた時間の中で根本原因を見出す上で再現性が高く、非常に有用だと感じました。 スクールの違いは? さらに、A校とB校の年齢分布を比較することで、それぞれのスクールの課題と強みが浮かび上がりました。具体的には、A校は働き盛り世代が多い一方、B校は子供やシニア層が中心となっており、主要な顧客層が逆転していることが一目で分かりました。このように、セグメント別に指標を比較することで、各拠点固有の課題や有効な施策が明確になると実感しました。 仮説検証は正確? また、仮説を立てた上で講座の時間帯やキャンペーン履歴、交通網のデータなどを用いて検証を行う、仮説思考とデータ検証の往復が大変重要であると学びました。これにより、先入観に捉われず具体的な打ち手を見いだすことが可能になります。 ヒストグラムで理解? ヒストグラムという可視化ツールについても大きな学びがありました。年齢のような連続変数を度数分布として表示することで、山の位置や高さ、外れ値の存在、平均や中央値とのズレなどを直感的に理解しやすくなり、チーム内の共有や迅速な意思決定につながることを実感しました。 今後の視点は? これらの学びを踏まえ、今後は「平均ではなく分布を見る」「結果から逆算して要因を分解する」という視点を意識し、セグメント別の比較や仮説と検証のサイクルを高速で回すことで、的確な改善策を提案していきたいと考えています。 データ分析は万全? この手法はマーケティングデータの作成や報告のほぼすべての場面で再現性高く応用できると実感しました。例えば、月次KPIレポートではサイト訪問者の平均滞在時間だけでなくヒストグラムを活用し、離脱が集中する滞在秒数帯を明らかにします。また、指標をチャネル別やデバイス別に分解することで、最も寄与度の高いセグメントを特定することも可能です。 キャンペーン対策は? 新規顧客獲得キャンペーンでは、過去の結果を年齢と購買頻度の度数分布で可視化し、コンバージョンが低い空洞セグメントに対して仮説―例えばクリエイティブの不一致や配信時間帯の不適合など―を立て、次回のテスト設計へつなげるアプローチを検討します。 リード改善の鍵は? また、リードスコアリングモデルの改善においては、成約率を平均値だけで評価するのではなく、四半位範囲や標準偏差を活用してばらつきの大きい属性を抽出し、スコアリングの重み付けや閾値を再設定することでモデルの精度向上を図ります。 CX調査で何が? CX調査の報告書においても、NPSの平均値のみならずプロモーター・パッシブ・デトラクターの比率をヒストグラムで示すことで、具体的な要因を定量的に明示し、より効果的な施策提案への流れを作ることができます。 ROI分析の焦点は? さらに、広報や広告などのクロスチャネルROI分析でも、チャネル別平均CPAだけでなく、キャンペーンIDや日次CPAをヒートマップでまとめる手法により、特に偏差の大きい日やクリエイティブを特定し、原因の仮説検証を進めることで、改善アクションの精度を高めることができると考えています。 経営判断のサポートは? 最後に、経営層向けのダッシュボード設計においては、平均売上や総リーチといった数値だけでなく、パレート図や箱ひげ図を取り入れることで、主要顧客層の状況や外れ値の影響を直感的に共有し、部門横断の意思決定を加速させる仕組みを実装したいと考えています。 行動計画は具体的? 具体的な行動計画としては、まず今週中に主要KPIレポートの雛形を改訂し、ヒストグラムや箱ひげ図、パレート図を自動生成するツールを作成します。続いて、来週には主要指標を要素分解ツリーで可視化したダッシュボードを試作し、経営層へのレビューを実施する予定です。その後、2週間以内に過去のキャンペーン実績をもとに年齢や購買頻度でビン分けし、空洞セグメントの抽出ロジックを構築します。 改善プロセスの定着は? 今月末には空洞セグメント向けのテスト設計を完了させ、翌月にはリードスコアリングモデルの再学習と改善を実施する計画です。また、四半期ごとに寄与度分析レポートを自動生成し、改善施策の立案を行い、継続的に学習と検証を社内に蓄積することで、「平均値→分布」「結果→要因分解」という共通プロセスを定着させていきたいと考えています。

戦略思考入門

データで描く経営の未来

感情論よりデータは? 今週の学習を通じて、課題解決において感情論ではなく、客観的なデータに基づいた多角的な分析と、論理的に伝える力が不可欠であるという点を強く実感しました。タクシー業界の市場縮小、運転手不足、燃料費の変動リスクなど、一見ネガティブな情報も、なぜ自社にとって問題なのか、またその解決策がどのように経営に貢献するのかを具体的に示すことが重要だと感じました。例えば、配車アプリ導入の際には「便利だから」という感情論ではなく、実働1日1車あたりの運送収入の向上や燃料費削減といった定量的なメリットを提示し、説得力を高める必要があります。同様に、提携相手との関係では、懸念に対して新たな顧客ネットワークへのアクセスやノウハウ共有といった共存共栄のメリットを論理的に伝えることが重要でした。 実務でどう活きる? また、この学びは私の実務にも大いに役立つものです。これまで漠然と抱えていた課題も、現状を数値で把握し、その原因を深掘りすることで具体的な解決策へと繋げることができると考えます。特に、外食業態の現場では新メニュー開発や既存メニューの見直しにデータ分析の手法を応用することで、「現状維持は衰退」という視点から戦略的にアプローチできると感じました。顧客データを詳細に分析し、どのメニューが十分に売れていないか、また潜在的なニーズがあるかを客観的に把握することにより、食材原価の変動リスクを踏まえた仕入れルートの見直しや、ロス削減を図るメニュー設計など、収益性向上につなげることができます. 店舗戦略は何が鍵? さらに、店舗の集客戦略やマーケティング活動においても、周辺の人口構成や競合店の情報を詳細に分析し、ターゲット顧客を明確化することで、適切なプロモーション戦略を展開することが可能です。例えば、若年層が多いエリアではSNSを活用したプロモーション、高齢者が多い地域ではテイクアウトやデリバリーサービスの導入など、具体的な戦略を立案していきます。また、店舗の強みや独自性を明示し、効果的に伝えることで、顧客へのアピール力を高める狙いがあります. 人材育成方法は? さらに、従業員の育成やシフト管理の効率化にも今回の学びは役立ちます。従業員のスキルや得意分野をデータとして可視化することで、適切な人員配置を行い、少ない人数でも店舗運営の質を維持する工夫が求められます。従業員教育においては、単にマニュアルを渡すのではなく、売上データや顧客からのフィードバックを共有し、なぜそのメニューが支持されているのか、背景を理解してもらうことで、サービスの質を向上させる取り組みが重要だと感じました. 売上分析のポイントは? まずは、POSシステムの売上データを活用し、日次・月次売上だけでなく、メニューごとの販売数、時間帯別の客数、客単価、曜日別の変動などの詳細な数値を抽出し、現状分析を強化します。特定メニューの売上低迷が続く場合は、その原因が季節性、価格設定、競合店の影響のいずれかを深掘りするために、顧客アンケートや口コミ分析も併せて実施します. 会議運営をどう改善? 次に、分析結果を基に新メニュー開発会議の進め方を見直し、シェフのアイデアに頼るだけでなく、データに基づいた「売上改善」や「顧客ニーズへの対応」を目的とした会議運営を行います。具体例として、売上が低迷するランチメニューを刷新して客単価の向上を目指すといった目標設定を行い、食材選定、原価計算、試作の各段階でデータを活用しながら評価します。会議では、単なる味の評価だけでなく、競合との比較やターゲット層への訴求力など多角的な視点から議論を進めます. 情報共有はなぜ重要? 最後に、従業員間での情報共有と教育を強化することで、データと論理に基づいた経営判断ができるよう努めます。抽出した売上データや顧客フィードバックを定期的に共有し、各自が「なぜこのメニューが売れているのか」を理解する機会を設けることで、課題意識を高め、店舗全体の生産性と顧客満足度の向上につなげていきます.

アカウンティング入門

数字が繋ぐ出店成功の秘訣

損益計算書の要点は? 損益計算書は、会社の収益状況を示す成績表として、売上総利益、営業利益、経常利益、税前当期純利益、そして最終的な当期純利益という5つの基本項目から構成されています。売上総利益は、商品やサービスの販売前に発生する費用を差し引いた数値を示し、営業利益は本業から得られる利益を表します。さらに、海外からの材料調達に伴う為替差益や、店舗出店時の支払利息などの財務活動による損益を加えたものが経常利益となり、そこに店舗売却益や火災などの一時的な損益を反映させることで税前当期純利益が算出されます。最終的に、税金を差し引いた当期純利益を把握するためには、まず全体の売上推移や各項目の売上比率に着目し、過去の実績や業界平均、自社目標との比較が不可欠です。 出店事例の意義は? 実際のカフェ出店事例では、出店コンセプトの明確化が極めて重要であることを学びました。コンセプトが明瞭になると、それに応じた仕入、店舗設計、採用、設備投資、商品開発などの基本事項が見えてきます。その過程で発生する各種コストの計算も可能となり、継続的な事業運営のために損益計算書を活用して売上アップや経費の見直しといった対策が求められます。売上規模に応じて最終的に残る金額が変化することからも、売上確保の重要性が実感でき、また、販売費や一般管理費の工夫により利益率が改善できる可能性があることが確認されました。 現状把握の方法は? 担当店舗では、まず出店コンセプトに立ち返り、現状とのギャップを把握することが必要です。現状、店舗従業員がどの程度コンセプトを理解しているか、また、従業員や地域、顧客が考える理想のコンセプトとは何かを調査し、今後の方向性を明確にした上で損益計算書を再確認することが求められます。さらに、コンセプトの違いが損益計算書の構成比にどのように影響を及ぼしているのかを把握し、店舗責任者と現状の課題やその対策について話し合うことで、本社と店舗が共通認識を持ち一体となって事業運営に取り組む体制を整えることが重要です。 数値理解を深めるには? 店舗責任者向けの研修では、今回の学びを活かし、各自の数値に対する理解度を高めることを目指します。店舗ごとに異なる規模や運営体系の中で、自ら課題を抽出し改善策を提案できるレベルへ引き上げるため、損益計算書の読み方や、毎月の売上達成状況の確認が基本であることを強調します。講義資料作成にあたっては、単に言葉の定義を伝えるだけでなく、その意味や具体的な活用方法を実践に直結する事例を交えて、すぐに取り組める内容に仕上げることが狙いです。 店舗分析はどう進む? また、既存の担当店舗については、まず上司との間で出店コンセプトの認識を統一し、経営計画書などからコンセプトを再確認します。その上で、店舗の事業活動が売上、利益、経費とどの程度連動しているかを客観的な数値で分析し、店舗責任者に現状の課題を明確にさせることが大切です。具体的な改善策を、損益計算書上のどの項目にどのように反映されるのかという観点から検討し、数値的根拠をもって提案させることで、責任者自身が解決策のイメージを具体化できるよう指導します。 効果の伝え方は? さらに、上司へ改善策を提案する際には、業界の一般的な数値や他社の運営状況を踏まえ、根拠を強化した説得力のあるアプローチが必要です。キャッシュフローの分析など、同業他社の事例を参考にする視点も取り入れながら、改善策の実現に向けた動きが求められます。 自発的研修の意義は? 研修資料の作成に際しては、特に運営費及び一般管理費に着目し、各店舗の費用状況を業界平均や社内の他店舗との比較を通じて分析する内容を検討します。受講者自身が「自らの店舗分析」を通して、主体的に店舗改善に取り組む意識を持てるよう、やらされる研修ではなく自発的な行動を促す構成に留意することが重要です。

クリティカルシンキング入門

実案で磨く、問いと提案の極意

マック事例の魅力は? マックの経営改善の事例では、飲食店が顧客にどのような仕掛けを施しているのか、そのプロセスを学べたことが大きな収穫でした。本質的な課題に迫る問いや考え方を理解するため、一連の流れを整理し、復習することが理解度をさらに高めるのに役立ちました。 顧客事例の意味は? 自身の業務では、直接売上や顧客へのアプローチ、営業活動に関わっていないため、講義での現実の顧客事例の理解は非常に貴重でした。もしも最前線で営業を担当しているなら、提供する製品を具現化するイメージを持ち、ペルソナ設定やデジタルマーケティングの手法を活用しながら、プレゼンテーションやセールストーク、販売手法、アフターサービスを体系的にまとめ、各顧客に合わせた販売戦略を確立することになるでしょう。 自業応用のヒントは? また、飲食店経営の事例からは、自分の業務にどのように応用できるかをイメージすることが大切だと感じました。課題の記載にはピラミッドストラクチャーやMECEの考え方を用い、時間軸、優先度、業務効率を考慮することで、組織内の意思決定に役立てる意識を持つようにしています。 本質課題の意義は? 「本質的な課題」とは、形式的な課題ではなく、物事の核となる部分を捉え、整理・分解することから解決策を導くアプローチです。課題を提示する際、核心を押さえた内容であっても、相手によっては関心が薄いことがあるため、視点を変える工夫が求められます。これまで、理解が得られなかった場合は無理に誘導せずに終わらせていた点を反省し、今後は相手の視点に立って一工夫を加えるよう努めます。 データ運用の疑問は? また、業務においては大量のデータを扱う中で、定型的なグラフを使った比較がルーティン化してしまっています。例えば、一部の部門ではBIツールとしてタブローが利用されていますが、他部門では別のサーバーのデータが正確とされ、導入に慎重な面もあります。今後は、現状の前提を見直し、利用可能な範囲を点検していく必要を感じています。 問い設定はどう? さらに、AI時代においては「問いの設定力」が極めて重要なスキルとなります。期待する答えを引き出すための問いを、行動経済学や心理学を加味しながら設定するには、実践と訓練が欠かせません。自らの得意分野とは異なる領域に挑むことで、問いの立て方の精度を高め、スキル向上を目指しています。 提案準備の工夫は? 業務企画の現場では、学んだ内容をプレゼンテーションに活かし、説得力のある提案を行えるよう努めています。同時に、データ利活用における課題についても、データ量の大きさやシステム構築の面から自らの知識を深め、SQLのトレーニングを通じて効率的なデータ処理を実現するための準備を進めています。 思考整理のポイント? クリティカルシンキングに関しては、Week1で学んだ基礎を基に、自分の考えやアイデアを整理して伝える力の強化を目指しています。マインドマップやピラミッドストラクチャー、MECEの手法を活用し、視点を変えて相手にわかりやすい説明を心がけ、試行錯誤を重ねながら整理力を向上させています。 言語化の成果は? また、日々のトレーニングとして、1週間で400文字程度の言語化を行っています。日経のアプリを活用し、1日2回、300文字程度で議題に関して知識の範囲内で整理し素早く書く練習を継続しています。これにより、書いた内容の振り返りと分析から課題を抽出し、より簡潔に伝える力の向上を目指しています。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

分解の先に迫る成功のヒント

売上分解のポイントは? ライブ授業で、伝統工芸品の売上低下の原因を分析するワークに参加しました。その際、思いついた要因に飛びついてしまうと誤った結論に至ることを身をもって実感しました。事例を読むと、さまざまな要因が一気に頭に浮かびますが、まずは「売上」をどのように分解し、各要素で問題を明確にすることが大切です。具体的には、問題の本質をWhatの視点で整理し、Whereで該当箇所を特定し、Whyで原因を分析、Howで解決策を立案するというステップを忠実に踏む必要性を感じました。 原因検討の視点は? また、原因を検討する際には、マクロとミクロ両面からの視点が求められることにも気づきました。普段から外部要因にも興味を持ちつつ、自社の業務や販売プロセスを細かく分解して分析することで、フレームワークの精度を向上させる努力が必要だと実感しました。さらに、実数と率の両方を確認するという基本的なポイントが、自身の分析手法において抜け落ちていたことにも気づかされました。 店舗運営の見直しは? 店舗業務においても同様に、業務を分解しボトルネックを解消する手法を取り入れたいと思います。現在の店舗業務は煩雑で無駄が多いと感じていましたが、ある店舗では人員を削減した結果、業務効率が向上し生産性が上がったという事例を経験しました。この経験から、最適な人員配置を再考し、労働分配率を指標として理想的な店舗運営を模索する必要性を認識しました。 工程分析の進め方は? そのためには、まず店舗の業務内容を細かく分解し、どの工程にボトルネックがあるかを洗い出します。具体的には、各作業にかかる時間や担当人数を数値化し、店舗間で比較を行います。比較指標は、優先順位をつけた上で、フレームワークを活用して要因の検証を行います。検証結果から仮説を立て、それを元に対策を立案することが最大の目的です。対策は、すぐに実行できるものと、長期的に計画的に実施すべきものとに分けて検討します。 環境変化への対応は? 法改正や業界環境の変化といった外部要因に柔軟に対応しつつ、業務効率向上に努めることは簡単ではありません。しかし、業務を数値化し経年変化を追うことで、後からさまざまな要因との関連性を振り返り、分析できると考えています。 実行計画の具体策は? 具体的なアクションプランは以下の通りです。   What:労働分配率が高いという問題を認識する。 ① 業務の洗い出しを今期中に行う(Where)。 ② 問題と考えられる業務を数値化する(今期中に実施)。 ③ 比較指標を立て、要因の検証を行う(今期中)。 ④ 店舗間の比較を来期上期に開始する。 ⑤ 結果を集計し、仮説を立てる作業を来期上期に実施する。 ⑥ 対策を立案するのを来期下期に進める(How)。 以上の手順を踏みながら、各ステップを着実に実行していくことが、問題解決への鍵となると感じています。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

問題解決力を鍛える!仮説思考の体験談

仮説思考をどう実践する? ライブ授業を通じて仮説思考や問題解決のプロセスを実践した結果、自分がどの部分を理解しておらず、どのような思考のクセがあるかを把握できました。知識や情報が頭に入っていても、実際にそれを使ってみると、自分の理解が甘い部分や、学んだことを目の前の課題にどう適用するかの難しさに気づかされます。したがって、学んだ内容は業務内外で積極的に使ってみることが大切だと感じました。 思考のクセをどう克服する? 特に自分の思考のクセでは、仮説立案の際に目の前のことにとらわれすぎて、要因を広げすぎる傾向があることが分かりました。ライブ授業の課題においても、例えば「8月の売上が昨対80%」という現状を経営者の立場で考える際、一昨年対比では大差がなく、昨年が特需だったのではないか、時系列に見た時期のずれがあり、年間で見れば問題ないのではないか、と考えてしまうことがあります。このような状況では、もともと課題なのか課題ではないのか、という判断が必要になることも学びました。目の前の課題が「8月単月の売上減少」なのか「長期的視点での経営インパクト」なのか、それ以外の課題も考慮し、分析の目的を明確に定義することの重要性を感じました。 データ分析はどう進める? 様々な部署のデータ分析案件においては、まず最初に課題を明確にすることを心がけています。誰にどんなアクションを求めているのかを明確にして取り組むことが大切です。例えば、「商品Aのリピート率が課題で分析したい」という依頼があった場合、新規とリピートを比較し、なぜリピート率を上げたいのかという「なぜなぜ分析」を依頼者と一緒に考えるようにしています。その答えが売上アップだった場合、新規とリピートに分解した際に新規のインパクトが大きい可能性もあることに気づけるようにします。依頼された時点で依頼者が既に課題を分解して要因を特定している場合、特に注意が必要です。分析結果をもとに誰にどのようなアクションを起こしてほしいのか、共通認識を持って進めています。 課題擦り合わせの重要性とは? 事業伴走においても、まず最初に課題の擦り合わせを行います。自身で仮説を広げることはもちろん、「なぜ」を臆せずに聞くことを大事にしています。また、各部門の事業理解が深ければ筋の良い仮説を立案する上で役立つため、各部門の経営会議資料を読み込み、事業の収益構造や現状課題への理解を深めるようにしています。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

マーケティング入門

販売戦略で未来を切り拓く氣づき

製品の売上はどう変わる? 改めて、「誰にどのように売るか」によって、同じ製品でも売上が大きく変わることを学びました。特に印象に残ったのが以下の点であり、今後の業務に活かしていきたいと考えています。 顧客の印象をどう作る? まず、顧客に適切なイメージを持ってもらうことの重要性です。私はSaaSプロダクトの販売に関わっていますが、開発者の想いやこだわりに影響を受けすぎていたように思います。開発者の想いを訴求ポイントとして効果的に活用することは大切ですが、それが顧客にどのように受け取られるかについても見直したいと考えています。また、「顧客にどのようなイメージを持ってもらいたいのか」については、開発からマーケティング、セールス、カスタマーサクセスに至るまでの過程で多少のズレが生じているように感じます。チャネル全体で共通のイメージを描けるよう、ミーティングなどを通じてコミュニケーションを図っていきたいです。 新しさはどう伝える? 次に、イノベーションの普及に向けた要件についてです。現在市場にあったプロダクトの後続として新しい試みを取り入れた製品を提供していますが、新しさをアーリーマジョリティに訴求する段階で、その新しさが受け入れられにくいという状況に直面しています。まずはイノベーションの普及要件を洗い出し、どの要件を満たしているのか、どの要件は伝え方を工夫する必要があるのかを明確にしたいと思います。 戦略はどう練る? 次に、自社プロダクトの見直しと来期以降の戦略立案について。11月が期末ですので、来期の戦略を立てる状況にあります。まずは自社プロダクトの見直しから始め、戦略とともに「顧客に持ってもらいたいイメージ」の統一を目指したいと考えています。 ターゲットは誰? また、ターゲットの検討について。これまでカウンターパートを経理部に絞っていましたが、直近の機能開発で新たな訴求先の可能性が見えました。今までの固定観念から離れ、誰にどう魅せるべきかを再考したいと思います。 部署間の連携は? 特に、他の部署のミッションや問題点、日々考えていることについての理解を深めるため、他部門との商談に参加することを検討しています。そして、経理部以外の部署との課題感や予算に対する裁量権を比較し、新たなターゲットへの訴求が必要かどうか判断していきたいと思います。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

「売上 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right