データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

学びのバランスを保ちながら進めるコツ

緻密な準備が成功を導く? 慎重になり過ぎず、頭でっかちになり過ぎないことが大切です。手を動かす前に仮説を立て、何を比較するかの指標を決める必要があります。ただし、やってみないと分からないこともあり、その際には柔軟に変更しても問題ありません。 有効な切り口を探る方法は? 引き出しの多さと選球眼が求められます。専門知識が少ない領域では、まずはフレームワークに頼るとよいでしょう。専門知識がある領域にフレームワークを掛け合わせることで、発見が生まれます。筋のよい切り口を選択するためには、現場の肌感覚としてのドメイン知識が重要です。 例えば、webサイトからの問い合わせを増やすための分析が必要な場合、データはすべて手元にあるので実践可能です。流入経路、案件種別、問合せ企業の業種、企業の所在地、案件規模、実施月、実施までの期間など、指標となり得る項目が多数あります。これらの指標を基に、問い合わせ数との相関関係を探ることで、有効な分析が可能となります。 仮説とフレームワークの活用 システムの切り替えに伴うベンダー選定や資料作成、現場からの業務要件整理とRFP作成などの業務においても、フレームワークや仮説の立て方が活用できることを実感しています。これらの方法は、実務において有用であり、実際に業務を進める上での基盤となります。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

クリティカルシンキング入門

問いの力で広がる学びの未来

問いをどう理解する? 「問いを立てる」という言葉について、普段の言い回しとは異なり、初めはピンと来なかったものの、ライブ授業の具体例を通じて理解が深まりました。YESかNOで答えられる問いを設定することで、その答えに対する論拠や分析が求められ、論理的な説明が自然と身につくと実感しています。これまでの日々の業務にも通じる部分があり、改めてその意義を認識することができました。 フレームワークの再確認は? また、これまでシステム開発の現場で漠然と使っていた思考のフレームワークが、今回の学習を通じて再確認できた点も大きな収穫です。部署内で複数のシステム開発案件のレビューを行った際に、報告内容が論理的でない場面に直面することがあり、状況を整理するためにこのフレームワークを意識的に活用できそうだと感じました。さらに、事業計画の立案や部下のサポートにも、今までの経験にとらわれない新たな視点を加える上で大いに役立ちそうです。 イシューリストをどう見る? ライブ講義で紹介されたイシューリストの作成方法も非常に印象的でした。日常業務では緊急度の高いものが優先され、本来注目すべき課題が見落とされがちですが、イシューリストを作成し定期的に見直すことで、重要な問題点を把握し、対処策を検討する体制を整えられると感じました。

クリティカルシンキング入門

問題解決の視点を広げる学び

本質は何だろう? 問題解決を行う際には、まず何が問題なのかをしっかりと定義することが重要です。問題が本当にその部分にあるのか、あるいは「そもそも」といった観点で見直してみることも大切です。その後の分析やアクションを行う際にも、常に問いを意識することで、本質から逸れることなく、もしズレが生じた場合には適切に軌道修正することができます。 対策はどう考える? たとえば、チームに人手不足という問題がある場合には、人員を増やすという対応だけでなく、同時に生産性の向上や仕組みの効率化を図ることが求められます。また、システム操作が煩雑で非効率だと感じた場合には、システムの改修を行うだけでなく、補助的なツールや直感的に理解しやすいマニュアルの整備を通じて生産性の向上を目指します。こうした問題を複数の視点から捉え、それぞれに合ったアプローチを実施することが重要です。 気づきはどう引き出す? また、メンバーに対して問いの重要性を示すことで、彼らから新たな気づきを得ることができるかもしれません。定期的に自分の活動を見直し、無意識のうちにバイアスがかかっていないかを確認することも重要です。他の人から異なる視点や意見を求め、自身にはなかった新たな問いを取り入れることで、自分自身の視野を広げることができます。

クリティカルシンキング入門

問題解決を見据えた視点の磨き方

物事を客観視するには? 講座全体を通じて得た学びを振り返ると、まず客観的に物事を見る力が重要性を増していると感じました。また、視点や視座、視野の持ち方、そして問題を分解する方法についても多くを学ぶことができました。問題に直面した際は、適切な問いを立てることから始め、データの加工・可視化を行って分析し、解決策を見出しスライドを作成するというステップが有効であると理解しました。 運用変更の必要性は? さらに、変化に伴うアクションを決定する際には、システムや社内ルールの変更に応じた運用変更が不可欠です。その際には、なぜその運用変更が必要なのかを関係者に分かりやすく説明することが大切です。同時に、変化に応じたアクションが本当に必要かを問い、様々な角度から分析することが必要です。このプロセスを通じて、回答を常に疑いながら最善の解決策を見出したいと考えています。 効果的なプレゼンは? また、上層部へのプレゼンテーションでも得た知識を役立てたいと思います。今年度のKPI達成や課題の共有に際しては、受け手にとって効果的なプレゼンとなるよう、視野・視座・視点を意識した分析と資料作りを心掛けます。これにより、より理解しやすく、見やすい資料を作成し、効果的な情報の伝達を実現したいです。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

「分析 × システム」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right