データ・アナリティクス入門

解決策を見つける真のプロセス学習

問題解決への焦りはなぜ? 何か問題が発生すると、「すぐにどうすればよいか?」と考えてしまうことは、私自身にも心当たりがあります。なぜそのような思考になるのかを考えると、問題を早く解決したいという焦りや、楽に解決したいという心理が影響しているのだと思います。しかし、こうしたアプローチは直感に頼りすぎるため、必ずしも良い結果を生むわけではなく、改めてこのことを認識しました。 まずは、問題を正確に定義することが重要です。そして、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」というステップを踏むことで、直感的な解決策よりも、より高い確率で適切な解決に繋がることを理解しました。 過去の対策とその反省 過去に、不具合が頻繁に発生するシステムがあり、そのとき私は「すぐにどうすればよいか?」を考え、対策を講じていました。具体的には、エンジニアの責任感を高めるために定期的に1on1を実施し、細部まで仕様を決めて実装の指示を出す、さらに実装とテストを別の担当が行うようにしていました。しかし、それらの対策を実施しても、不具合が改善されることはありませんでした。根本的な原因を特定しないまま対策を講じていたことが理由だと考えます。 問題の本質を捉え、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」をしっかり分析することが重要です。そうすれば適切な解決策が明らかになり、問題が減らせるかもしれません。 効果的な解決策を学ぶプロセス 今回、より高い確率で適切な解決策を見つける方法を学ぶことができました。学んだステップを実施する際に、漏れや重複があると効果的な対応ができなくなることも認識しました。しかし、「問題を早く解決したい」という焦る気持ちや、「できるだけ楽に解決したい」という心理が強く働くと、再び「すぐにどうすればよいか?」と考えがちになるかもしれません。 最初は、課題解決に時間がかかることもあるかもしれませんが、まずは今回学んだ方法を実践し、継続することで問題解決の精度とスピードを高めていきたいと思います。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

クリティカルシンキング入門

情報リテラシーと本質を問う力で未来を拓く

学びを再確認するには? 今週は振り返りの時間でした。 ■講座を通して学んだこと 情報を疑問視し、分析し、論理的に評価することで、信頼性を見極め、正しい判断を行うことが可能になるということを改めて学びました。 考え方を研ぎ澄ますには? ■常に頭においておき、反復練習すること 人は「自分が考えやすい方向に考えてしまう」傾向があります。そのため、思考が偏らないよう、本当にそれでいいのかを自問自答し続ける訓練が必要です。本質に迫るために「なぜ」を繰り返し、問題の根幹に到達することが重要です。 問題解決にはまず「イシューを特定する」ことが必要です。それから「問いを残し」意識し続け、「問いを共有する」ことで組織全体に浸透させます。また、信頼できるデータや根拠を用意し、論理に一貫性を持たせることが求められます。そして、異なる視点や意見を考慮してバランスを保ち、感情に流されず冷静に判断することが重要です。背景や文脈を理解し、公正で倫理的な判断を心がけることも必要です。 プロジェクトに活かすには? ■実際のプロジェクトでの適用 システム導入プロジェクトでは、毎回のワークショップでベンダーの提案について議論します。この際、ベンダーの資料を読み解き、疑問点や言葉の定義の違い、目線が合っているかの確認を行います。前提条件の確認や、トリガーとなった事実の裏にある本質を見極めることは重要です。結論を出すに当たっては、軽率な判断を避けるべきです。 自身が運営するプロジェクトでも、本質的な目的を見据えた方向性を決定し、その目的に基づいた運営内容を構想します。対象となる役員や経営層、一般社員などに応じて適したスライドの作成や見せ方、言葉の選び方に工夫を凝らします。メッセージを明確にし、ピラミッドストラクチャーで根拠を整理することで、スライドの内容が大きく変わります。慣れるまでには時間がかかりますが、毎回対象ごとにピラミッドストラクチャーを作成することが重要です。

戦略思考入門

戦略で切り拓く明日への一歩

外部環境と強みは? 組織のありたい姿を定めるためには、まず外部環境を分析し、組織の存在価値を見極めることが必要です。その上で、各部門の強みを把握し、競合施設には模倣が困難な優位性かどうかを検証します。強みをさらに伸ばす戦略と、弱みを新たな価値に転換する戦略の双方を立案し、それぞれが組織全体の方向性と整合しているか、具体性や現実性、実行のための仕組みづくりが可能かどうかを確認することが求められます。 ミッションとビジョンは? また、外部環境を踏まえてミッションを明確化し、中長期的なビジョンを定め、それを組織全体で共有することが重要です。たとえば、地域医療を支援しながら、病院としての急性期医療の高度化を目指す姿勢を明確にするためには、バリューチェーンを描き、各部門が持つ人材や設備の優位性を評価します。優位性が特定の診療科において明らかであれば、先端医療分野に重点を置くとともに、広報活動を強化して地域に情報を発信し、集患につなげる戦略が考えられます。さらに、救急医療など、他の部門における強みの持続性を見極め、次の投資計画に反映させることも不可欠です。 ブランドとDXは? 長年培われた模倣困難なブランド力の活用も重要な論点です。地域住民向けの講座などを通じて信頼を深め、職員採用の面でもその力を発揮することが期待されます。一方で、現時点での弱点、たとえばDXの遅れについては、新たなシステムの導入によって克服し、地域に新たな価値を提供する可能性を探る必要があります。 戦略目標はどう? 以上の分析を踏まえ、組織の戦略テーマを明確にし、各戦略に対して測定可能な目標を設定することが求められます。目標は現実的でありながら挑戦的であり、職員に対してその姿勢が推奨されるべきです。リーダーとして市場での立ち位置をどのように確立するか、また、フォロワーの立場を維持するかという最終決断に向け、参考となる意見を求める状況です。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

戦略思考入門

競争優位を築くための発想転換の鍵

顧客設定は何が鍵? 差別化戦略を考慮する際、まず重要なのは顧客設定です。顧客設定を行った後、その顧客にとって価値があるかどうかを検討します。そして、顧客の視点で選択可能なすべての競合を考慮し、それらの競合との違いを意識することが鍵となります。特に、自社の強みを活かした差別化は非常に効果的です。 VRIO分析で本質を見つける? 競争優位を実現できるかを評価するためには、VRIOフレームワークが有効です。これには、以下の観点が含まれます。まず、経済的価値を持っているか、市場規模や持続可能性を考えます。次に、希少性を持つか、経営資源の独自性を評価します。さらに、模倣困難性があるかを検討し、組織力が整っているか、持続可能な体制や仕組みがあるかを確認します。 DXサービスの未来はどう見る? 自社のDXシステム開発サービスについて、このフレームワークを用いて分析してみます。まず、経済的価値については肯定的です。しかし、希少性は特に見当たらず、模倣も簡単です。ただし、組織が若いため持続は可能でしょう。そのため、現状では競争劣位ではないものの、競合に対する大きな優位性もなく、単なる競合均衡状態に留まっているといえるでしょう。 特化戦略で優位を創出する? そこで、希少性を生み出すため、発想を転換します。DXシステム開発の範囲は広いため、特定の業界に特化したDXシステム開発を検討します。この場合、ドメイン知識が非常に重要となります。自社がこの知識を持ち、大規模な案件開発の経験を有していれば、希少性を確立できます。 持続優位はどこから生まれる? 再度VRIOフレームワークで分析すると、経済価値があり、希少性があり、模倣も困難であることから、若い組織であっても仕組化に成功すれば、持続的な競争優位を築く可能性があります。

クリティカルシンキング入門

データ分析で視野を広げる学びへの旅

データ分析の手法とは? データを見る際には、単に与えられた数字を眺めるだけでなく、自らデータに触れて比率などの必要な情報を引き出し、グラフ化することで、複数の視点から分析することが重要です。こうしたアプローチにより、データを多角的に捉えることができます。 MECEで現状を把握するには? データを分解する際は、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが大切です。同じ内容を繰り返すことなく、全体を漏れなくカバーすることで、現状を正確に把握できます。 具体的な分析の例は? システムや業務の分析では、具体的な例として航空券の購入フローや空港での搭乗フロー、整備フローなどを分解して考えることが挙げられます。また、売り上げ分析では、路線別や年齢別、搭乗回数別に分解してみることも効果的です。 業務に応用できるか? これらの手法は日常業務でも活用可能です。例えば、システム障害発生時の対応やアクセス数のデータ分析、WEBサイトへの攻撃分析といった場面でも役立ちます。 テンプレート活用の効果は? さらに、切り口のテンプレートを作成すると便利です。例としては、航空券購入から搭乗後までのプロセスを旅客の視点や業務の視点で分類することが考えられます。また、研修アンケートの分析にもこの方法を応用できます。受講前には思いもよらなかった角度からデータを切り分け、Tableauといったツールの活用も視野に入れると良いでしょう。 新たな視点が発見を生む? 日常業務においては、失敗を恐れずにデータを分解し、新たな視点で見ることがスタート地点です。こうした姿勢が新たな発見につながります。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

「分析 × システム」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right