データ・アナリティクス入門

プロセス見直しで未来を切り拓く

どうやって原因究明? 原因を特定するためには、分析対象を複数のプロセスに分解し、各段階で明確な問題箇所を探ることが重要です。人の行動に即したプロセス設定を行うと、問題の箇所が特定された後の改善策の検討もスムーズに進むことが分かりました。 なぜ事前に決定すべき? また、What、Where、Why、Howといった基本的なステップと同様に、プロセスの設定も仮説検証に入る前に決め、その内容を関係者間でしっかりとすり合わせる必要があります。たとえば観光客の減少の原因を探る場合、ユーザーがどのように情報を収集し観光地を選んでいるかというプロセスと、現状で手に入っているデータがどの段階で取得されたものかを突き合わせることが求められます。 データ整理の要点は? さらに現状分析においては、最初に幅広いデータを集めることが大切です。各データが持つ性質や項目、定義について周知するとともに、ファネルに沿ってデータの分類や分析を進め、必要なデータの補完を行うといった段階的な準備が成功の鍵となります。

データ・アナリティクス入門

目的設定で切り拓く未来

分析ってどう進める? 分析とは、物事を要素ごとに分解して比較することだと考えています。データ分析のプロセスを学んだことで、物事の見方がクリアになり、目的を明確に意識した上で作業を進める大切さを実感しました。分析終了後にどのような状態を目指すのかを具体的に思い描いてから、データの収集や加工に取りかかることで、効率的により良い結論へたどり着きやすくなりました。 目的はどう変わる? また、既存の実績と計画の対比資料については、目的を見直すことで、その後の行動につながる資料に改善できると考えています。新たな課題に対しても、目的をしっかり意識することで、より適切な判断へと結びつけたいと思います。 目的共有で安心? 資料作成に入る前には、まず目的の設定と仮説の作成を十分に検討するため、「データ分析のプロセス」を印刷し、常に見える場所に貼っておくようにしています。自分が資料を作る際のみならず、他の人に作成を依頼する際にも、目的をしっかり共有する説明を心がけ、全体の質向上に努めています。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

分けて比べる実践の記録

手法の意図は何? 今回のデータ分析では、まず「分けて比べる」という手法を意識し、対象や基準を明確に設定して検証しています。データ分析の目的—つまり、何のために分析を行い、どのような成果を期待するのか—をはっきりさせた上で、ゴールや仮説、今後の取り組みイメージを具体的に描くよう努めています。また、目の前にあるデータのみを頼りにせず、生存者バイアスに十分注意しながら分析を進めています。 売上向上の秘訣は? 購入者の分析とパートナー企業の売上分析の双方について、各々の良い点と改善すべき点を明確に整理することで、パートナー企業全体の売上向上に寄与するマクロサポートへと繋げたいと考えています。さらに、サンプルデータや本講座を通してデータ分析の実践回数を積み重ねることで、これまでの経験に加え新たなプロジェクトに活かせる知識を身につけたいと思います。過去に他のプロジェクトで培った分析経験を再検証し、今後のプロジェクトに向けたデータ収集や分析手法の向上を図っていく所存です。

クリティカルシンキング入門

問題解決のための視座を磨く学び

課題の意識とは? 課題を意識し、情報を捉えていくことで、問題点を素早く明確にとらえたことが印象に残っている。 今週までに学んだ内容を一つ一つ実行することで、何が問題かを具体的に把握し、その結果具体的な解決策に辿り着くことができた。 課題解決のステップ 現状を認識し、課題を設定して解決することができる。例えば、売上を増やすためや、業界の傾向を把握するために必要な情報を正確に把握し、不足している情報を見つけることができた。また、仮説を立てやすくなり、素早い調査や解決策に到達する助けとなった。 多面的に問題を捉える方法 課題に取り組む際には、関係する相手の捉え方を意識し、ズレが無いよう確認して進めていきたい。課題を達成するためには、多面的に問題を捉え、解決策を考えていくことが重要だと感じた。 また、情報を新たに調べる際には、目的を意識し、逸れないように気をつける必要がある。手段を考える時には、その手段が目的に適っているかを常に意識することが大切だ。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

戦略思考入門

戦略的思考で最速ゴール達成の秘訣

最速到達の秘訣は? 戦略的思考とは、適切なゴール(目的)を明確に定め、それに向かう現在地からの道のりを描き、可能な限り最速・最短距離で到達することを目指すプロセスです。この実現には、どのように進めるかを考え、決定し、実行していくことが求められます。 目標設定のコツは? ゴールは抽象的なものではなく、具体的に設定しなければなりません。設定されたゴールは他者と共通の認識を持つことが大切で、これにより取り組むべき領域を明確にすることができます。そして同時に、必要でないことを選択し排除することも可能になります。こうした考え方を習慣化し、身につけることが重要です。 仮説思考はどう育む? 創発的戦略においては、自分自身のゴールを常に考え続ける意識を持ち、必要に応じて方向を修正しながら明確なゴールイメージを創造していくことが大事です。この過程により仮説思考能力が向上し、根拠を持って物事を多角的に考えることができるようになると考えられます。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

「仮説 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right