データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

クリティカルシンキング入門

視覚化とロジックツリーで解決力UP!

なぜ定量化と視覚化が重要なのか? 定量化して物事を考えることの大切さと必要性、またグラフを作成して視覚化することの重要性を学びました。これに加えて、抜け漏れなく課題を考えるためにロジックツリーを利用し、様々な視点から解決策を導き出す方法が有効であることも理解しました。そして、最も大切なのは、解決すべきイシューを見極めることです。注力すべき課題や目的を明確にし、その役割を踏まえて解決すべき仮説を設定し、問題解決に取り組むことが重要です。 解決策の提示には何が必要か? 解決策を提示する際には、事実や定量データに基づいて解釈を加えることが必要です。また、要素を抜け漏れなく考えるために、様々な仮説を検討し、最終的な目的からずれないように注意することが求められます。 提案とコミュニケーションの手法をどう活用する? 仕事で提案内容や課題の特定、仮説を考える際には、ロジックツリーやグラフの作成などの手法を使って考えるとよいでしょう。また、コミュニケーションを取る際に、立場によって社内外の人がどんなことを考えているのかを言語化することも効果的です。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。

データ・アナリティクス入門

論理の力で切り拓く学びの軌跡

何を明らかに? まずは、最初のステップとして「何を明らかにしたいか」を再認識しました。what‐where‐why‐howの視点で、どの問題にどう向き合うかを意識する必要があると感じました。 ロジックの使い方は? また、whereを検討する際、単に箇条書きで列挙するのではなく、ロジックツリーなどを活用することで、漏れなく観点を広げられることが重要だと認識しました。 実践はどう進める? すぐに実践できるイメージはまだ固まっていませんが、まずは身近な問題を洗い出し、関連するデータを収集しながら、常に何を知りたいのかを考えていこうと思います。実務への落とし込みはまだ模索段階ですが、具体的な数字を使いながら学んだ内容を繰り返し適用することで、定着を図りたいと考えています。 業務整理はどうする? 改めて、自身の業務における問題点や知りたい情報を明確にするため、業務内容の整理が必要だと感じました。また、仮説を設定する際には、フレームワークだけでなく思考プロセスも磨く必要があると実感し、積極的にスキルを向上させていこうと思います。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

データ・アナリティクス入門

数値分析で見える改善のカギ

売上低下の原因は? 売上低下の理由を分析する際、問題箇所の特定、売上構造の分解、そして仮説設定と検証方法をリアルタイムで実践しました。特に、売上単価については平均値だけでなく中央値も用いることで、新たな切り口から問題点を把握できることを再確認しました。また、グラフの見せ方が伝える力を持つことについても改めて学び、理解を深めるきっかけとなりました。 予算未達の理由は? 同様に、予算が未達成となっている要因を特定するため、予算構成項目を分解し、前年や前月との比較を通じて落ち込みが生じている点や、伸ばすことが可能な点を明らかにしました。さらに、予算未達成が「予算設定自体の高さ」なのか「実績の低下」に起因しているのかを明確にすることも試みました。 社内データの解析は? 最後に、社内データを活用して予算の各項目ごとに集計を行い、予算比、前年比、前月比などの比較を通じて問題箇所の把握と予算の位置づけを行いました。問題箇所が明らかになった後は、ギャップを3Cの視点から分析し、具体的な仮説を立てた上で検証を進めました。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

「仮説 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right