クリティカルシンキング入門

問いで見えるチームの未来

問いをどう設定する? まず、答えを急がず、まずは問いを立てることが大切だと理解しました。自分自身だけでなく相手も偏った考えに陥りがちなため、問いを継続する際には、MECEやロジックツリーなどの手法を活用して、自分の視点が客観的かどうかチェックしています。 部署兼務の意義は? 3月から新しく立ち上げた部署との兼務となったため、まずは重要な課題(イシュー)を特定し、新しい部署が軌道に乗るよう努めたいと考えています。また、現在の部署にも課題が残っているため、チームメンバーと共にイシューの特定を進めていく予定です。みんなで話し合うことで問いを共有し、同じ目的に向かって前進できると信じています。 ビジョンどう見極め? あるべき姿を考え、まずはそのビジョンがぶれていないか、他者の意見を聞くことが重要です。現状を正確に把握し、理想とのギャップを明確に言語化することで、解決策を導き出します。解決策に早急に飛び付くのではなく、様々な切り口で問題を分解し、漏れなく重複なく検討することが求められます。最終的には、複数の仮説を立てることで、反対の視点や「NO」の仮説からも検証を進めています。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

仮説検証が切り拓く発見の旅

フレームワークはどう役立つ? 従来、3Cや4Pといったフレームワークは、見せ方や伝え方の整理学として活用されることが多かったです。しかし今週の学習では、仮説設定においてもフレームワークを用いることで、一度幅広く発散しやすいことが分かりました。 どのシーンで学ぶ? この学習を通して、以下のような具体的なシーンで仮説検証の重要性を感じました。 要因分析は何が必要? まず、セールスにおいては失注やペンディングとなった際の要因を分析すること、次に採用活動で辞退が発生した場合、原因を明確にしKGI/KPIを計測しながら軌道修正を行うこと、そして配下メンバーの育成やモチベーション管理について考えることです。 検証の視点は変わる? 既に一部の分野では仮説検証や打ち手の実行に取り組んでいるものの、改めて「0ベースで課題に対する要因を検討する」という姿勢を強化したいと思います。従来は、成功体験や失敗の再発防止といったステレオタイプ的な視点で要因を捉える傾向がありましたが、今後はフレームワークを活用して、より多角的かつ広い視野で検証に取り組む意識を持ちたいと考えています。

アカウンティング入門

業種で読み解くB/Sの秘密

B/Sの表現はどう違う? B/S上で、業種ごとに異なる事業モデルがどのように表現されるかが非常に興味深かったです。たとえば、資産面から固定費が大きくなる事業とそうでない事業があり、経営コンセプトによって必要な資産の状態が変わるため、それに合わせた負債の設定も変わることが理解できました。 B/Sの特徴はどう見る? また、B/Sに関しては以下の点に注目して学びを深めたいと考えました。まず、業種ごとにB/Sの特徴がどのように異なるのか、大きな傾向を感じ取ること。次に、同一業種内でも企業ごとの資産、負債、純資産の構成の違いに焦点を当てること。そして、35年ほどの長期にわたるB/Sの変化の流れを把握することです。短期間、たとえば3年程度では変化が見えにくいという仮説も立てています。 財務数値はどう分析? これらは、財務関係の書籍で顕著な事例が紹介されているため、その内容を確認することで業種ごと、企業ごとの違いを概略的に理解していきたいと考えています。ある程度理解を深めたうえで、実際の財務数値を整理し比較することで、より確実な分析に繋げていきたいです。

データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。

データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

データ・アナリティクス入門

自ら創る仮説が未来を拓く

仮説の前提って何? 起こった問題や今後の課題に対して、仮説を立てること自体はよく行っていましたが、自分で仮説の前提を作るという点については、あまり意識していなかったため、とても勉強になりました。 どうして巻き込む? また、コーチング手法においても、相手に仮説を立ててもらうことを意識することで、チーム全体を巻き込みやすくなると感じました。 なぜ多角で考える? 具体的には、プランニング時や、問題が発生したプロセスを振り返る際、また未来に具体性を持たせる必要があるときや、チームに各自の未来を考えてもらう場合など、幅広い場面で役立つと実感しています。さらに、一つの仮説だけでなく、異なる視点からの仮説を立てることも重要だと思います。 先が見える計画は? ビジネスプランの策定においては、チームに問いかける際に仮説を促す話し方を意識したり、あえて自分で仮説の前提を設定することで、未来のプランを頭に落とし込みやすくなります。さらに、予想外の事態が起こった場合でも、そのロジックを考え直し、未来に活かすことを意識するようになりました。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

考える力を広げる3C4P活用術

フレームワークの効果は? ゼロベースで仮説を立てるより、フレームワークを用いることで視点が広がり、仮説の網羅性が向上すると感じました。これまでは感覚に頼ってひとつの答えに固執することが多く、思考が止まる場面もありました。しかし、実践演習では3C4Pを活用することで、問題に対して一歩踏み込んだ考察ができるようになりました。 データ収集の意義は? また、仮説検証においては、自分に都合の良いデータだけでなく、比較のための情報を収集する重要性を学びました。反対意見を含む情報をも集めることで、仮説の説得性が高まりました。提案する側とされる側では視点や優先順位が異なるため、複数の仮説を持つことが必要だという考えにも納得できました。 目的と結論の整理は? さらに、仮説には問題解決だけでなく、目的や時制で整理される結論の仮説があることを知りました。問題解決のプロセスであるWhat、Where、Why、Howという問いは、日々の目標設定において部下との面談で活かされ、お互いに何が問題で何に取り組むかを具体的にすり合わせることができたと実感しています。

「仮説 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right