データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

クリティカルシンキング入門

偏りを超えた新しい気づき

なぜ偏った視点に気づく? 物事を考える際、人間はつねに偏った見方をしてしまうという現実を意識しています。その偏りこそが「ほかには何があるのだろうか」と自分に問いかけるきっかけとなり、課題に取り組む前にまず問いを立て、その答えを導き出すプロセスが大切だと学びました。また、相手に伝えるときは正しい日本語を使い、伝える手順を踏んで具体的な理由を添えることが必要だということも理解しています。 どう伝えると分かりやすい? 顧客との会議や提案の場面では、まず問いを明確にし、事前に参加者と共有することが重要と感じています。その結果、伝わりやすい資料作りや話し方を工夫することで、常に重要なポイントに焦点をあてたブレのない進め方が可能になると考えています。 何を合わせるべきか? さらに、自分の常識は会議参加者の常識と必ずしも一致しないことを認識し、まずは前提条件を合わせる姿勢が求められます。その上で、議題となる問いを全員で共有し、話が脱線しそうな場合には常に問いに立ち返って軌道修正を図ります。そして、情報を収集しデータを分解することで、相手に伝わりやすい形の資料を作成する努力を続けています。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

クリティカルシンキング入門

比較と変化で見つける新発見

比較と変化は? 私は、日常の分析活動で「比較」と「変化」の視点が非常に重要であると実感しています。どの分野においても分析は欠かせず、特にメンバーから提出されるレポートを評価し、判断や助言を行う際にこの視点は大きな指針となります。 グラフで何が見える? そのため、視覚的な要素、特にグラフの活用が不可欠です。グラフはデータの比較や変化を直感的に理解させる力があり、情報を分かりやすく伝えます。また、グラフを用いた分析においては、対象を適切に分解することが重要です。この分解はMECEの原則に基づき、内容を重複なく漏れなく整理することが鉄則です。 分解の方法はどう? 分解の方法としては、基本的には均等な分割が王道ですが、状況によっては不均等に分けた方がより筋の通った分析ができる場合もあります。この柔軟な発想で分析することが、実践において非常に役立つと感じています。 分析の極意は何? 以上の理由から、比較と変化の視点を大切にし、視覚的ツールとしてグラフを積極的に用いるとともに、MECEに基づく分解を意識することが、日々の分析やレポート作成において極めて有効であると考えています。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

マーケティング入門

お客様の本音に気づく瞬間

潜在ニーズを発見できる? 成功するマーケティングにおいて、顧客が抱える潜在的な困りごと―すなわちペインポイントを見出すことは非常に重要です。顧客自身が気付いていない欲求を言語化するためには、購買履歴やサイトの回遊履歴などの定量的な指標と、アンケートやグループインタビューなどによる定性的な指標の両面から分析する必要があります。 自社強みはどこ? ペインポイントが明確になった後は、他社に先んじて自社の強みを活かし、その解消策を講じることが求められます。このため、競合他社と比較して自社の優位性や強みが何であるかを客観的に整理し、その認識をチーム全体で共有することが不可欠です。 定性評価はどうなる? また、自社の顧客についてペインポイントを検討する際には、購買履歴やサイトの回遊データといった数値分析に加えて、顧客アンケートなどを通じた定性的な評価も取り入れる必要があると感じます。 チーム共有は確実? さらに、競合他社に対して自社の強みや優位性を明確にし、客観的な視点で整理した内容をチーム内で共通認識として持つことが、今後の施策を円滑に進める上で重要となると考えます。

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right