データ・アナリティクス入門

本質掘り下げ!ありたい自分への道

問題の本質は何ですか? 問題解決の基本ステップとして「What」「Where」「Why」「How」を意識することが大切だと実感しています。どうしても解決策に飛びがちですが、まずは真の問題が何であるか、どこで発生しているのか、その原因は何かを正確に把握することに努めたいと思います。 2つの解決策は? また、問題解決には「正しい状態に戻す」方法と「ありたい姿に到達する」方法という2つのアプローチがあることを学びました。従来は不足部分を補うこと、つまり現状を正しい状態に戻すことだけが問題解決だと考えていましたが、目指すべき理想の姿にどう近づくかという視点も重要であることに気づきました。 どう対処しますか? 業務上で問題が発生したり上司からの指示があった際、つい解決策を提示してしまいがちですが、今後はこの問題解決のステップに沿って、論理的に対処するよう心がけたいと思います。 改善の進め方は? さらに、社内でデータ活用やBIツールの推進を進める際、ありたい姿とのギャップを埋めることで現状を正しい状態に戻すことだけを考えていました。しかし、すでにできている部分をさらに良い状態に改善していくことも同時に考える必要があると感じています。

データ・アナリティクス入門

訪日旅行を再考する戦略の鍵

学んだ知識は有効? 7月にマーケティング入門と戦略思考入門を受講した経験があり、今回のGAiLの課題ではこれまで学んだ内容とデータ・アナリティクス入門で学んだことが融合し、スムーズに取り組むことができました。 旅行商品の問題点は? 私の所属する訪日旅行のチームでは、アメリカの旅行会社と協力して訪日旅行商品を企画開発し、仕入れや手配、受客対応を行っています。しかし、現状の訪日旅行商品は基本的に東京・京都・大阪の周遊ツアーに偏っていて、旅行者にも受入先にもあまりメリットがないオーバーツーリズムの問題が深刻化しています。この現状をどうにか打破し、解決策を導くために「3W1H」を活用して考察していきたいと思います。 観察の視点は何? まず、日常で目にする商品やサービスを観察するときに、それがなぜヒットしているのか、その背景を考えることを心掛けています。具体的には、商品やサービスが誰に向けられているのか、どのようなニーズを満たしているのか、セールスポイントは何か、という要素を分析します。また、日本人が感じる日本の魅力と外国人が感じる魅力にはしばしば隔たりがあるため、日本政府観光局のデータと海外メディアのデータを比較分析し、観光素材の調査を進めています。

クリティカルシンキング入門

グラフで描く成長の記録

グラフ選びはどうする? データの特性や伝えたい内容に応じて、グラフの種類を使い分けることが大切です。たとえば、時系列データの場合は縦の棒グラフが適切ですが、経緯や変化を重視する場合には折れ線グラフを用います。また、各要素を比較する際は横の棒グラフが有用です。 文字装飾は必要? 文章や資料の中で斜体やアンダーラインを使うと、他との違いが際立ち、伝えたいポイントが明確になります。同時に、色やフォントの使い方にも意味があるため、やり過ぎないよう十分注意する必要があります。 アイコンの使いどころは? さらに、アイコンは視覚的に情報を伝える上で重要な役割を果たします。意図が伝わりやすくなるよう、一言補足を加えることも効果的です。 レイアウトはどう作る? また、読者の視線は基本的に左から右、上から下へと動くため、資料のレイアウトはこの流れを意識して構成するのが良いでしょう。報告、説明、説得、各種資料作成やメールなど、相手が誰であるかを十分に考慮し、場面ごとに柔軟な戦略を立てることが求められます。 対策をどう講じる? 以上のポイントを踏まえ、場面に応じた最適な対策を講じていきたいと考えます。皆様の多様なノウハウをご教示いただければ幸いです。

クリティカルシンキング入門

振り返りから始まる新たな挑戦

思考力はどう育む? 知識のインプット、アウトプット、他者からのフィードバック、そして振り返りというサイクルが、成果に繋がる思考力を育む重要なプロセスであると改めて実感しました。普段の生活では意識的にクリティカルシンキングに取り組む動機付けが難しいですが、このトレーニングの繰り返しにより、当たり前のように思考結果をアウトプットできるようになりたいと思います。 修了は新たな出発? 本講座の修了はゴールではなく、むしろ新しいスタートラインに立ったと感じています。年間評価面談では、目標達成に至らなかったメンバーとも「イシューは何か」という視点で一緒に考え、今後の改善につなげたいと考えています。 問いはどう捉える? また、来期に向けては「問いを残す」ことと「問いの共有」を重視する予定です。組織として共通の「問い」を定めた後、課会で使用する資料の冒頭にテンプレートとして掲示し、毎回全員が確認できる仕組みづくりに取り組みます。 評価をどう見直す? まずは、自分自身の年間評価に対するイシューを検討します。強引に仮説を立て、必要なデータを集め、複数の切り口から結果を分析することで、来期には目標達成へ向けたしっかりとした下準備を整えていきます。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

クリティカルシンキング入門

グラフ選びで伝える魔法

適切なグラフの選び方は? グラフの活用法について、まず何よりも重要なのは適切なグラフの種類を選ぶことだと実感しました。グラフの種類を誤ると、本来伝えたかった内容が正確に伝わらなくなる恐れがあります。単にデータを視覚化するだけではなく、どの部分を強調するか、メッセージや全体の流れとどう整合性をとるかという視点が大切だと気づかされました。 グラフ効果の見極め方は? また、データの推移や変化を示すために、数字を羅列するだけでなくグラフ化することで、一目瞭然に情報を伝えられる点も大きな学びでした。これまであまり意識してこなかった部分であったため、今後は数年分のデータを用いたグラフ作成に挑戦し、より大きく変化が見えるような工夫をしていきたいと思います。同時に、グラフのタイトルの付け方にも改善の余地があると感じています。 実践提案の工夫は? 今回得た知見は、次回作成する提案資料にも活かしていきたいと考えています。さらに、相手に内容をしっかり読んでもらうための工夫は、メールなどの日常のコミュニケーションでも重要です。たとえば、メールの件名や資料の冒頭部分、タイトルの付け方などに工夫を凝らすことで、伝えたい情報がより効果的に届くと実感しました。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

クリティカルシンキング入門

問いで切り拓く未来

正しい問いは何? 問いから始めることの大切さを学びました。問いの内容によってその後の考え方は大きく異なるため、正しい問いを設定することが非常に重要です。また、設定した問いが後で忘れられがちであるため、常に問いを意識し続ける必要があります。問いを共有しなければ、議論がうまくまとまらないという点も意識しなければなりません。 どうやって問いを共有する? たとえば、マーケティングでは、まず何を問いとするのかを明確に設定し、メンバーとその問いを共有することが大切です。こうすることで、問いを忘れずに一貫した内容で実践することが可能になります。同様に、会議をファシリテートする際も問いを意識することで、議論が脱線した場合に素早く軌道修正できると感じました。 思考の偏りにどう向き合う? また、今回の学びを通じて、仕事でクリティカルシンキングを意識的に使用し、身につけることの重要性を再認識しました。日本語を正しく使い、データを分かりやすく伝えるとともに、問いから始める姿勢を業務に積極的に活用するよう努めています。そして、自分の思考が偏っている可能性を常に認識し、特に問いの設定についてさまざまな視点から考えられるよう心がけることが今後の課題だと感じました。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

クリティカルシンキング入門

チームで紡ぐ課題解決の知恵

根本解決の問いは? イシューを明確にし、チームと共有しながら常に問い続ける必要性を改めて感じました。さまざまな角度から物事を分解することで、根本的な解決策を探ることが重要であり、その際、できることとできないこと、また優先順位を決めることが問題解決につながると実感しました。 議論の迷いは何? ミーティングでは、チームのイシューを合わせるのが難しくなる場面(具体的な話題に偏ったり、別のイシューに話が逸れる場合)が何度もありました。こうした状況を踏まえ、イシューを見失わないよう適宜わかりやすい形で提示し、イシューの出し方についても壮大になりすぎていないか、またわかりやすいかを意識してチームメンバーとすり合わせを行うことが大切だと感じました。 共有の工夫はどう? 今後は、イシューを特定しチームと共有できるよう、起こっている事象をより明確に説明できる方法を準備していきたいと思います。具体的な手段としては、事象を分解(MECEなどの視点やデータ分析を活用)し、わかりやすい言葉で伝える取り組みを進めていきます。また、相手に情報を探させることなく、必要な資料を整えた上で、常にイシューを意識したミーティングや会話を実現するよう努めます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。
AIコーチング導線バナー

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right